Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37630246

RESUMEN

Endocrine-disrupting compounds (EDCs) constitute a wide variety of chemistries with diverse properties that may/can pose risks to both humans and the environment. Herein, a total of 26 compounds, including steroids, flame retardants, and plasticizers, were monitored in three major and heavily urbanized river catchments: the R. Liffey (Ireland), the R. Thames (UK), and the R. Ter (Spain), by using a single solid-phase extraction liquid chromatography-mass spectrometry (SPE-LC-MS/MS) method. Occurrence and frequency rates were investigated across all locations over a 10-week period, with the highest concentration obtained for the flame retardant tris(2-chloroethyl) phosphate (TCEP) at 4767 ng∙L-1 in the R. Thames in Central London. Geographical variations were observed between sites and were partially explained using principal component analysis (PCA) and hierarchical cluster analysis (HCA). In particular, discrimination between the R. Ter and the R. Thames was observed based on the presence and concentration of flame retardants, benzotriazole, and steroids. Environmental risk assessment (ERA) across sites showed that caffeine, a chemical marker, and bisphenol A (BPA), a plasticizer, were classified as high-risk for the R. Liffey and R. Thames, based on relative risk quotients (rRQs), and that caffeine was classified as high-risk for the R. Ter, based on RQs. The total risks at each location, namely ΣRQriver, and ΣrRQriver, were: 361, 455, and 723 for the rivers Liffey, Thames, and Ter, respectively. Caffeine, as expected, was ubiquitous in all 3 urban areas, though with the highest RQ observed in the R. Ter. High contributions of BPA were also observed across the three matrices. Therefore, these two compounds should be prioritized independently of location. This study represents a comprehensive EDC monitoring comparison between different European cities based on a single analytical method, which allowed for a geographically independent ERA prioritization to be performed.


Asunto(s)
Disruptores Endocrinos , Retardadores de Llama , Humanos , Irlanda , España , Cafeína , Cromatografía Liquida , Ríos , Espectrometría de Masas en Tándem , Medición de Riesgo , Plastificantes , Reino Unido
2.
Environ Sci Technol ; 54(14): 9062-9073, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32589847

RESUMEN

Antibiotic transformation products (TPs) generated during water treatment can be considered as an environmental concern, since they can retain part of the bioactivity of the parent compound. Effect-directed analysis (EDA) was applied for the identification of bioactive intermediates of azithromycin (AZI) and ciprofloxacin (CFC) after water chlorination. Fractionation of samples allowed the identification of bioactive intermediates by measuring the antibiotic activity and acute toxicity, combined with an automated suspect screening approach for chemical analysis. While the removal of AZI was in line with the decrease of bioactivity in chlorinated samples, an increase of bioactivity after complete removal of CFC was observed (at >0.5 mgCl2/L). Principal component analysis (PCA) revealed that some of the CFC intermediates could contribute to the overall toxicity of the chlorinated samples. Fractionation of bioactive samples identified that the chlorinated TP296 (generated from the destruction of the CFC piperazine ring) maintained 41%, 44%, and 30% of the antibiotic activity of the parent compound in chlorinated samples at 2.0, 3.0, and 4.0 mgCl2/L, respectively. These results indicate the spectrum of antibacterial activity can be altered by controlling the chemical substituents and configuration of the CFC structure with chlorine. On the other hand, the potential presence of volatile DBPs and fractionation losses do not allow for tentative confirmation of the main intermediates contributing to the acute toxic effects measured in chlorinated samples. Our results encourage further development of new and advanced methodologies to study the bioactivity of isolated unknown TPs to understand their hazardous effects in treated effluents.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos/análisis , Antibacterianos/toxicidad , Cloro , Desinfección , Halogenación , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Environ Res ; 173: 12-22, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884434

RESUMEN

Antibiotics accumulation in aquatic organisms may be of great concern from an ecological point of view but also from a human perspective, especially when they are accumulated in edible animals like marine mussels. In this work, mussels (Mytilus galloprovincialis) were exposed to sulfamethoxazole antibiotic (SMX) at 10 µg/L during 96 h, followed by 24 h of depuration. The experiment was carried out at summer and winter conditions. SMX showed a bioconcentration factor in mussel of 1.5 L/kg (dry weight) and 69% of the compound was eliminated from the organism in 24 h. The metabolomics approach revealed alterations in amino acids levels (aspartate, phenylalanine, valine and tryptophan) pinpointing disturbances in osmotic regulation and energy metabolism. Besides, the levels of some nucleotides (guanosine and inosine) and a carboxylic acid were also affected. However, SMX exposed mussels did not show any significant alteration in the enzymatic activities related to the xenobiotic metabolism and oxidative stress. Moreover, some of the changes observed in mussel's metabolites suggested alterations in mussel's organoleptic characteristics that can affect its quality as seafood commodity. Overall, our results showed that SMX exposure to marine mussels may have ecological implications by provoking sub-lethal effects to exposed organisms. Nevertheless, no risk for consumers derived from mussel ingestion is expected due to the low bioconcentration capacity of SMX and fast depuration in this seafood type.


Asunto(s)
Mytilus/fisiología , Sulfametoxazol/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Bioacumulación , Metabolómica
4.
Environ Res ; 169: 377-386, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30529139

RESUMEN

A huge variety of organic microcontaminants are presently detected in freshwater ecosystems, but there is still a lack of knowledge about their interactions, either with living organisms or with other contaminants. Actually, carbon nanomaterials like fullerenes (C60) can act as carriers of organic microcontaminants, but their relevance in processes like bioaccumulation and biotransformation of organic microcontaminants by organisms is unknown. In this study, mesocosm experiments were used to assess the bioaccumulation and biotransformation of three organic microcontaminants (venlafaxine, diuron and triclosan) in river biofilms, and to understand how much the concomitant presence of C60 at environmental relevant concentrations could impact these processes. Results indicated that venlafaxine exhibited the highest bioaccumulation (13% of the initial concentration of venlafaxine in water), while biotransformation was more evident for triclosan (5% of the initial concentration of triclosan in water). Furthermore, biotransformation products such as methyl-triclosan were also present in the biofilm, with levels up to 42% of the concentration of accumulated triclosan. The presence of C60 did not involve relevant changes in the bioaccumulation and biotransformation of microcontaminants in biofilms, which showed similar patterns. Nevertheless, the study shows that a detailed evaluation of the partition of the organic microcontaminants and their transformation products in freshwater systems are important to better understand the impact of the co-existence of others microcontaminants, like carbon nanomaterials, in their possible routes of bioaccumulation and biotransformation.


Asunto(s)
Diurona/metabolismo , Fulerenos , Triclosán , Clorhidrato de Venlafaxina/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bioacumulación , Biopelículas , Biotransformación , Ecosistema , Ríos
5.
J Environ Manage ; 207: 396-404, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29190482

RESUMEN

Pharmaceuticals are environmental micropollutants that pose an emerging challenge because they are poorly eliminated in conventional wastewater treatment plants. Over the last decade, many attempts have been made to solve this problem, and wastewater fungal treatment is a promising alternative. In this study, six different ligninolytic fungi (Trametes versicolor, Ganoderma lucidum, Irpex lacteus, Stropharia rugosoannulata, Gymnopilus luteofolius and Agrocybe erebia) were studied as bioremediation candidates for the removal and degradation of six recalcitrant pharmaceutical micropollutants: Carbamazepine (CBZ), Venlafaxine (VFX), Iopromide (IPD), Diclofenac (DCF), Cyclophosphamide (CFD) and Ifosfamide (IFD). Self-immobilization in a pellet shape was achieved for all fungal mycelia (which was the first time that this was reported for S. rugosoannulata, G. luteofolius, and A. erebia). Biodegradation achievement was greater than 90% for IPD with G. luteofolius and greater than 70% for CBZ with S. rugosoannulata, which suggests a great potential for this alternative biological treatment. Besides, this was the first report where fungal treatment achieved CFD and IFD removals greater than 20% for the treatment with T. versicolor, G. lucidum and S. rugosoannulata.


Asunto(s)
Agaricales , Biodegradación Ambiental , Trametes , Aguas Residuales , Contaminación del Agua
6.
Environ Sci Technol ; 50(20): 10780-10794, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27597444

RESUMEN

Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.


Asunto(s)
Ecosistema , Lagos , Monitoreo del Ambiente , Recreación
7.
Appl Microbiol Biotechnol ; 100(5): 2401-15, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26541333

RESUMEN

Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.


Asunto(s)
Biota , Hospitales Veterinarios , Trametes/metabolismo , Drogas Veterinarias/metabolismo , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Animales , Reactores Biológicos/microbiología , Biotransformación , Aguas Residuales/química
8.
J Environ Manage ; 155: 106-13, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25785785

RESUMEN

Selenastrum capricornutum and Chlamydomonas reinhardtii were tested for possible biodegradation of the hormones ß-estradiol (E2) and 17α-ethinylestradiol (EE2) when cultured in anaerobic digester centrate (ADC). Neither ADC nor the hormones had a negative or toxic effect on the microalgae growth but enhanced it. E2 and EE2 biodegradation was evaluated under different culture conditions. After 7 days of treatment, between 88% and 100% of E2 was removed by S. capricornutum. Overall, 42 and 54% of the removal was attributed to biodegradation processes, while the rest of the removal was due to adsorption onto the algae biomass. For EE2, removals between 60 and 95%, depending on the culture conditions, were achieved, with biodegradation accounting for 20-54% of the removal. E2 and EE2 were completely removed in the experiments performed with C. reinhardtii, except for EE2 in the presence of ADC, which decreased to 76%. However, C. reinhardtii presented higher adsorption percentages: 86% and 71% after 7 days for E2 and EE2, respectively. Transformation products (TPs) of E2 and EE2 generated in each treatment were also monitored. Two TPs were tentatively proposed as degradation products of E2 and EE2 by the algae. In addition, the removal of 26 endocrine disruptors and related pollutants present in the centrate was also monitored: bisphenol A was completely removed, whereas tris(2-butoxyethyl)phosphate was only removed in the absence of hormones.


Asunto(s)
Disruptores Endocrinos/metabolismo , Estradiol/metabolismo , Etinilestradiol/metabolismo , Microalgas/metabolismo , Aguas Residuales , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Humanos
9.
J Hazard Mater ; 465: 132974, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38218030

RESUMEN

The comprehensive monitoring of pharmaceutically active compounds (PhACs) in the environment is challenging given the myriad of substances continuously discharged, the increasing number of new compounds being produced (and released), or the variety of the associated human metabolites and transformation products (TPs). Approaches such as high-resolution mass spectrometry (HRMS)-based suspect analysis have emerged to overcome the drawbacks of classical target analytical methods, e.g., restricted chemical coverage. In this study, we assess the readiness of HRMS-based suspect screening to replace or rather complement target methodologies by comparing the performance of both approaches in terms of i) detection of PhACs in various environmental samples (water, sediments, biofilm, fish plasma, muscle and liver) in a field study; ii) PhACs (semi)quantification and iii) prediction of their environmental risks. Our findings revealed that target strategies alone significantly underestimate the variety of PhACs potentially impacting the environment. However, relying solely on suspect strategies can misjudge the presence and risk of low-level but potentially risky PhACs. Additionally, semiquantitative approaches, despite slightly overestimating concentrations, can provide a realistic overview of PhACs concentrations. Hence, it is recommended to adopt a combined strategy that first evaluates suspected threats and subsequently includes the relevant ones in the established target methodologies.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Humanos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Espectrometría de Masas , Análisis Espectral , Preparaciones Farmacéuticas
10.
Sci Total Environ ; 953: 176108, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265683

RESUMEN

Wastewater-based epidemiology (WBE) is a well-established approach that can provide objective and real-time data on the consumption of substances such as pharmaceuticals. However, most of the studies reported so far compares consumption data obtained using WBE with those derived from prescription data from public health systems, which is often incomplete and might represent a source of uncertainty. This study aims to compare the measured pharmaceutical consumption back calculated with the WBE approach with consumption derived from dispensed pharmaceuticals in two regions of Spain, managed by two different Health Systems. To do so, a group of 17 pharmaceuticals, including the most representative ones of every therapeutic family, were monitored in influent wastewater (IWW) samples collected over a week campaign in spring 2022 at four different wastewater treatment plants (WWTPs) in Spain: two WWTPs in Madrid city (center of Spain) and two WWTPs in Catalonia (Northeast of Spain). Population-normalized daily loads (PNDL) revealed that the patterns of pharmaceutical occurrence in the different WWTPs are very similar, being acetaminophen, 4-acetamidoantipyrine and valsartan the pharmaceuticals with the highest PNDL values: 17162 ± 1457 mg day-1 1000 inh-1 for acetaminophen, 2365 ± 696 and 2429 ± 263 mg day-1 1000 inh-1 for 4-acetamidoantipyrine, 2006 ± 541 and 2041 ± 352 mg day-1 1000 inh-1 for valsartan. Pharmaceutical PNLDs were then transformed into measured pharmaceutical consumption (MC) and compared with dispensed consumption (DC) data obtained from the pharmacies in the catchment area where the WWTPs are located. A ratio MC/DC within 0.8 to 1.2 was obtained for 11 out of the 17 studied pharmaceuticals. Highlighting a match in all the cardiovascular system pharmaceuticals, with the exception of losartan (1.29-1.39 ratio) and valsartan (1.35-1.43) in all WWTPs. In summary, the degree of correlation between MC/DC is higher than those previously reported comparing with the prescribed pharmaceutical consumption.

11.
Sci Total Environ ; 857(Pt 1): 159202, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36208750

RESUMEN

This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L-1. Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L-1 to µg L-1. Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 102 to 5.6 × 106 gene copies L-1 water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.


Asunto(s)
Antibacterianos , Manantiales Naturales , Humanos , Antibacterianos/farmacología , Antibacterianos/análisis , Escherichia coli/genética , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Tetraciclinas/análisis , Sulfonamidas , Agua , China
12.
Talanta ; 252: 123804, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998445

RESUMEN

In this work, the Regions of Interest-Multivariate Curve Resolution (ROIMCR) method is proposed for the analysis of non-target metabolomics data. Samples from marine mussels (Mytilus galloprovincialis) exposed to a sublethal concentration (10 µg/L) of sulfamethoxazole (SMX) during 4 days in different seasonal conditions (summer and winter) were analyzed by High-Performance Liquid Chromatography - High-Resolution Mass Spectrometry (HPLC-HRMS) to study the effect of their exposure to SMX and the different seasonal conditions. The Regions of Interest (ROI) procedure has been applied for data filtering, compression, preprocessing and storage steps. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) is then applied to the previously MS ROI preprocessed data sets to resolve the elution profiles and spectral fingerprints of the chemical constituents of the analyzed samples. The peak areas of the elution profiles of the chemical constituents resolved by the combined ROIMCR procedure were analyzed by Principal Component Analysis (PCA) and samples were clustered according to their experimental seasonal and SMX exposure. The effects of the two investigated factors and of their interaction on the concentrations of the metabolites were statistically assessed by ANOVA simultaneous component analysis (ASCA). Both types of analyses, PCA clustering and ASCA, confirmed that the seasonal conditions (summer versus winter) produced larger effects than those produced by the exposure to SMX and by the interaction of these two factors. The concentration changes of 16 identified endogenous metabolites were validated individually using a Wilcoxon statistical test, which confirmed the presence of significant disturbances in the levels of some of these metabolites (free fatty acids, amino acids and nucleic acids), and indicated the possible alteration of six different biological pathways, affected by the investigated seasonal and SMX exposure factors.


Asunto(s)
Mytilus , Animales , Sulfametoxazol , Estudios Retrospectivos , Quimiometría , Espectrometría de Masas/métodos , Metaboloma
13.
Environ Toxicol Pharmacol ; 98: 104063, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36623700

RESUMEN

In this study, a non-target metabolomic approach was used to investigate changes in the metabolome of juvenile meagre (Argyrosomus regius) exposed to venlafaxine (20 µg/L). A total of 24, 22 and 8 endogenous metabolites tentatively identified in liver, brain and plasma, respectively, were significantly changed in venlafaxine exposed meagre, showing tissue-dependent variations in the metabolic profile. The amino acids tryptophan, tyrosine and phenylalanine, which are related to the synthesis, availability, and expression of neurotransmitters (e.g., serotonin, dopamine, epinephrine), showed to be dysregulated by venlafaxine exposure. A high impact was observed in fish brain metabolome that showed a trend of up-regulation for most of the tentatively identified metabolites. In conclusion, the identification of possible biomarkers of exposure in fish metabolome to environmental stressors such as venlafaxine is crucial to assess early signal changes at molecular level, enabling the prevention of deleterious effects at the organism and population levels.


Asunto(s)
Antidepresivos , Perciformes , Animales , Clorhidrato de Venlafaxina , Peces , Metaboloma , Exposición a Riesgos Ambientales , Biomarcadores
14.
MethodsX ; 10: 102143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007617

RESUMEN

This work describes the development of analytical workflows based on pyrolysis coupled with gas chromatography-mass spectrometry (Pyr-GC/MS) for the qualitative and quantitative analysis of 12 of the most common plastic polymers in environmental samples. The most suitable characteristic pyrolyzate compounds and respective indicator ions were selected for each polymer in order to obtain the most appropriate response for analytical purposes. Additionally, commercial pyrolyzates and polymers libraries were used to confirm the identity of the detected microplastics. The method was validated, showing a good linearity for all the plastic polymers (R2 > 0.97) and limits of detection between 0.1 (polyurethane) to 9.1 µg (polyethylene). The developed methodology was successfully applied for the analysis of plastic polymers in environmental microplastic samples collected in three Mediterranean beaches (NE Spain).•Fast and reproducible Pyr-GC/MS method for the analysis of the 12 most common plastic polymers in a single GC/MS run•Straightforward analytical workflows using pyrolyzates and polymers libraries enable a fast identification and quantification of microplastics in environmental samples.

15.
Environ Sci Pollut Res Int ; 30(45): 101250-101266, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648922

RESUMEN

This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days. For the same period, a 72 to 92% removal of short-chain alkanes (C12 to C19) was obtained by BA/BS, while only 3 to 65% removal was achieved by NA. BA/BS also showed high degradation efficiency of long-chain alkanes (C20 to C24) at 120 days, reaching 90 and 92% of degradation of icosane and heneicosane, respectively. In contrast, an increase in the levels of cyclosiloxanes (characterized as bacterial bioemulsifiers and biosurfactants) was observed in the soil treated by the consortium. Conversely, the NA presented a maximum of 37% of degradation of these alkane fractions. The 5-ringed PAH benzo(a)pyrene, was removed significantly better with the BA/BS treatment than with the NA (48 vs. 38 % of biodegradation, respectively). Metabarcoding analysis revealed that BA/BS caused a decrease in the soil microbial diversity with a concomitant increase in the abundance of specific microbial groups, including hydrocarbon-degrading (bacteria and fungi) and also an enhancement in soil microbial activity. Our results highlight the great potential of this consortium for soil treatment after diesel spills, as well as the relevance of the massive sequencing, enzymatic, microbiological and GC-HRMS analyses for a better understanding of diesel bioremediation.

16.
Chemosphere ; 340: 139837, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598946

RESUMEN

Contaminants of emerging concern (CEC) are still under research given the vast diversity of compounds reaching freshwater ecosystems and adverse effects they might cause. In this study, the environmental fate of 73 CEC, comprising sweeteners, stimulants and several pharmaceutical therapeutic classes, and changes in fluvial biofilm photosynthetic parameters were evaluated in a semi-arid urban river receiving diffuse and point sources of pollution (Suquía river, Argentina). Out of the 37 CEC detected, 30 were quantified in surface water (n.d. - 9826 ng/L), 10 in biofilm (n.d. - 204 ng/gd.w.) and 9 in the clay fraction of sediments (n.d. - 64 ng/gd.w.). CEC distribute differently among the 3 matrices: water phase presents the biggest diversity of compounds (14 CEC families), being analgesic/anti-inflammatories the most abundant family. Antibiotics largely predominated in biofilms (7 CEC families), while the stimulant caffeine and some antibiotics where the most abundant in sediments (6 CEC families). Different CEC accumulated in biofilms and sediments upstream and downstream the city, and big shifts of biofilm community occurred downstream WWTP. The shift of biofilm community upstream (F0 > 0) and downstream the WWTP (F0 = 0) shows a sensitive response of F0 to the impact of WWTP. Biofilm photosynthetic parameters responded in less impacted urban sites (sites 1, 2 and 3), where significant correlations were found between ketoprofen and some antibiotics and biofilm parameters. The diversity and amount of CEC found in the urban section of Suquía river alert to the magnitude of point and non-point sources of pollution.


Asunto(s)
Ecosistema , Ríos , Humanos , Antibacterianos , Biopelículas , Agua
17.
Environ Int ; 181: 108288, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37918065

RESUMEN

A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.


Asunto(s)
Monitoreo del Ambiente , Peces , Animales , Humanos , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos
18.
Sci Total Environ ; 845: 157309, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839888

RESUMEN

Wastewater-based epidemiology (WBE) can be a useful complementary approach to assess human exposure to potentially harmful chemicals, including those from personal care and household products. In this work, a fully automated multiresidue method, based on on-line solid-phase extraction liquid chromatography - tandem mass spectrometry, was developed for the determination of 27 biomarkers of human exposure to selected chemicals from personal care and household products, including parabens, UV filters, phthalates and alternative plasticizers, phosphorous flame retardants/plasticizers (PFRs), and bisphenols. These biomarkers include both the parent compounds and their human metabolites. In addition, two oxidative stress biomarkers, 8-epi-prostaglandin F2α and 4-hydroxy nonenal mercapturic acid, were also considered in the study. The method was carefully optimized to tackle the challenges of analyzing compounds with different physico-chemical properties in a highly complex raw wastewater matrix, while model experiments were performed to investigate filtration losses and analyte stability. The applicability of the developed method was tested by analyzing raw wastewater from four European cities: Antwerp, Brussels (Belgium), Girona (Spain), and Zagreb (Croatia). Twenty-one biomarkers (10 parent compounds and 11 metabolites) were detected in all analyzed wastewater samples. The parent compounds with the highest mass loads were PFRs, parabens, and bisphenol S, while phthalate monoesters were the most prominent metabolites. The mass loads of most compounds were quite similar across cities, but geographic differences were observed for some biomarkers, such as metabolites of phthalates and alternative plasticizers. Exposure was then assessed for seven substances for which quantitative urinary excretion data are known. Our results indicate that safe reference values were exceeded for several contaminants, including butylated phthalates, bisphenol A, and tris(2-butoxyethyl) phosphate, particularly for toddlers. With this relatively simple method, which requires less sample manipulation, it is possible to promptly identify and monitor exposure to harmful chemicals at the population level using the WBE approach.


Asunto(s)
Plastificantes , Aguas Residuales , Biomarcadores/orina , Cromatografía Liquida , Productos Domésticos/análisis , Humanos , Parabenos/análisis , Plastificantes/análisis , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Aguas Residuales/química
19.
Environ Toxicol Chem ; 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36582150

RESUMEN

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2023;00:1-16. © 2022 SETAC.

20.
J Hazard Mater ; 404(Pt A): 124102, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049635

RESUMEN

A suspect screening methodology was developed for the fast and reliable identification of 360 contaminants of emerging concern (CECs) of anthropogenic origin in the vulnerable area of the Ebro Delta (Catalonia, Spain) and to track for potential contamination sources. The suspect screening methodology was combined with a risk assessment approach to prioritize the most ecologically relevant CECs. Out of the 360 suspects, 37 compounds were tentatively identified, 22 of which were fully confirmed using isotopically labelled standards. The detected suspect compounds included pesticides, pharmaceuticals, personal care products, stimulants and their metabolites. Pesticides were more ubiquitous in irrigation and drainage channels, while pharmaceuticals, stimulants, and personal care products were the most common in effluent wastewaters, in the receiving freshwater systems as well as in the marine environment. Ten compounds were found to be of high ecological concern, including the pharmaceuticals telmisartan, venlafaxine, and carbamazepine, the herbicides terbuthylazine, desethylterbuthylazine, and terbutryn, the fungicides azoxystrobin, tebuconazole and prochloraz and the insecticide tebufenozide. These compounds could be used as markers of anthropogenic contamination in riverine and coastal ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA