Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 34(17): 5965-70, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760855

RESUMEN

Despite the inability of CNS axons to regenerate, an increased regenerative capacity can be elicited following conditioning lesion to the peripheral branch of dorsal root ganglia neurons (DRGs). By in vivo radiolabeling of rat DRGs, coupled to mass spectrometry and kinesin immunoprecipitation of spinal cord extracts, we determined that the anterograde transport of cytoskeleton components, metabolic enzymes and axonal regeneration enhancers, was increased in the central branch of DRGs following a peripheral conditioning lesion. Axonal transport of mitochondria was also increased in the central branch of Thy1-MitoCFP mice following a peripheral injury. This effect was generalized and included augmented transport of lysosomes and synaptophysin- and APP-carrying vesicles. Changes in axonal transport were only elicited by a peripheral lesion and not by spinal cord injury. In mice, elevated levels of motors and of polyglutamylated and tyrosinated tubulin were present following a peripheral lesion and can explain the increase in axonal transport induced by conditioning. In summary, our work shows that a peripheral injury induces a global increase in axonal transport that is not restricted to the peripheral branch, and that, by extending to the central branch, allows a rapid and sustained support of regenerating central axons.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Animales , AMP Cíclico/metabolismo , Ganglios Espinales/fisiología , Lisosomas/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/fisiología , Ratas , Ratas Wistar , Sinaptofisina/metabolismo
2.
Mol Neurobiol ; 53(7): 4596-605, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26298667

RESUMEN

Following injury to peripheral axons, besides increased cyclic adenosine monophosphate (cAMP), the positive injury signals extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT-3) are locally activated and retrogradely transported to the cell body, where they induce a pro-regenerative program. Here, to further understand the importance of injury signaling for successful axon regeneration, we used dorsal root ganglia (DRG) neurons that have a central branch without regenerative capacity and a peripheral branch that regrows after lesion. Although injury to the DRG central branch (dorsal root injury (DRI)) activated ERK, JNK, and STAT-3 and increased cAMP levels, it did not elicit gain of intrinsic growth capacity nor the ability to overcome myelin inhibition, as occurred after peripheral branch injury (sciatic nerve injury (SNI)). Besides, gain of growth capacity after SNI was independent of ERK and cAMP. Antibody microarrays of dynein-immunoprecipitated axoplasm from rats with either DRI or SNI revealed a broad differential activation and transport of signals after each injury type and further supported that ERK, JNK, STAT-3, and cAMP signaling pathways are minor contributors to the differential intrinsic axon growth capacity of both injury models. Increased levels of inhibitory injury signals including GSK3ß and ROCKII were identified after DRI, not only in axons but also in DRG cell bodies. In summary, our work shows that activation and transport of positive injury signals are not sufficient to promote increased axon growth capacity and that differential modulation of inhibitory molecules may contribute to limited regenerative response.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/lesiones , Ganglios Espinales/metabolismo , Regeneración Nerviosa/fisiología , Neuropatía Ciática/metabolismo , Transducción de Señal/fisiología , Animales , Axones/patología , Células Cultivadas , Femenino , Ganglios Espinales/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones , Ratas , Ratas Wistar , Neuropatía Ciática/patología , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA