Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679448

RESUMEN

Connected and autonomous vehicles (CAVs) have witnessed significant attention from industries, and academia for research and developments towards the on-road realisation of the technology. State-of-the-art CAVs utilise existing navigation systems for mobility and travel path planning. However, reliable connectivity to navigation systems is not guaranteed, particularly in urban road traffic environments with high-rise buildings, nearby roads and multi-level flyovers. In this connection, this paper presents TAKEN-Traffic Knowledge-based Navigation for enabling CAVs in urban road traffic environments. A traffic analysis model is proposed for mining the sensor-oriented traffic data to generate a precise navigation path for the vehicle. A knowledge-sharing method is developed for collecting and generating new traffic knowledge from on-road vehicles. CAVs navigation is executed using the information enabled by traffic knowledge and analysis. The experimental performance evaluation results attest to the benefits of TAKEN in the precise navigation of CAVs in urban traffic environments.


Asunto(s)
Vehículos Autónomos , Vehículos a Motor , Viaje , Accidentes de Tránsito
2.
Sci Rep ; 12(1): 18134, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307467

RESUMEN

Detecting dangerous illnesses connected to the skin organ, particularly malignancy, requires the identification of pigmented skin lesions. Image detection techniques and computer classification capabilities can boost skin cancer detection accuracy. The dataset used for this research work is based on the HAM10000 dataset which consists of 10015 images. The proposed work has chosen a subset of the dataset and performed augmentation. A model with data augmentation tends to learn more distinguishing characteristics and features rather than a model without data augmentation. Involving data augmentation can improve the accuracy of the model. But that model cannot give significant results with the testing data until it is robust. The k-fold cross-validation technique makes the model robust which has been implemented in the proposed work. We have analyzed the classification accuracy of the Machine Learning algorithms and Convolutional Neural Network models. We have concluded that Convolutional Neural Network provides better accuracy compared to other machine learning algorithms implemented in the proposed work. In the proposed system, as the highest, we obtained an accuracy of 95.18% with the CNN model. The proposed work helps early identification of seven classes of skin disease and can be validated and treated appropriately by medical practitioners.


Asunto(s)
Enfermedades de la Piel , Neoplasias Cutáneas , Humanos , Redes Neurales de la Computación , Aprendizaje Automático , Neoplasias Cutáneas/diagnóstico por imagen , Algoritmos , Enfermedades de la Piel/diagnóstico por imagen
3.
Comput Intell Neurosci ; 2022: 5211949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463239

RESUMEN

In this modern world, we are accustomed to a constant stream of data. Major social media sites like Twitter, Facebook, or Quora face a huge dilemma as a lot of these sites fall victim to spam accounts. These accounts are made to trap unsuspecting genuine users by making them click on malicious links or keep posting redundant posts by using bots. This can greatly impact the experiences that users have on these sites. A lot of time and research has gone into effective ways to detect these forms of spam. Performing sentiment analysis on these posts can help us in solving this problem effectively. The main purpose of this proposed work is to develop a system that can determine whether a tweet is "spam" or "ham" and evaluate the emotion of the tweet. The extracted features after preprocessing the tweets are classified using various classifiers, namely, decision tree, logistic regression, multinomial naïve Bayes, support vector machine, random forest, and Bernoulli naïve Bayes for spam detection. The stochastic gradient descent, support vector machine, logistic regression, random forest, naïve Bayes, and deep learning methods, namely, simple recurrent neural network (RNN) model, long short-term memory (LSTM) model, bidirectional long short-term memory (BiLSTM) model, and 1D convolutional neural network (CNN) model are used for sentiment analysis. The performance of each classifier is analyzed. The classification results showed that the features extracted from the tweets can be satisfactorily used to identify if a certain tweet is spam or not and create a learning model that will associate tweets with a particular sentiment.


Asunto(s)
Aprendizaje Profundo , Medios de Comunicación Sociales , Teorema de Bayes , Humanos , Aprendizaje Automático , Análisis de Sentimientos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA