Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neurobiol Dis ; 198: 106553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38839022

RESUMEN

α-Synuclein (α-syn) is a small protein that is involved in cell vesicle trafficking in neuronal synapses. A progressive aggregation of this protein is the expected molecular cause of Parkinson's disease, a disease that affects millions of people around the world. A growing body of evidence indicates that phospholipids can strongly accelerate α-syn aggregation and alter the toxicity of α-syn oligomers and fibrils formed in the presence of lipid vesicles. This effect is attributed to the presence of high copies of lysines in the N-terminus of the protein. In this study, we performed site-directed mutagenesis and replaced one out of two lysines at each of the five sites located in the α-syn N-terminus. Using several biophysical and cellular approaches, we investigated the extent to which six negatively charged fatty acids (FAs) could alter the aggregation properties of K10A, K23A, K32A, K43A, and K58A α-syn. We found that FAs uniquely modified the aggregation properties of K43A, K58A, and WT α-syn, as well as changed morphology of amyloid fibrils formed by these mutants. At the same time, FAs failed to cause substantial changes in the aggregation rates of K10A, K23A, and K32A α-syn, as well as alter the morphology and toxicity of the corresponding amyloid fibrils. Based on these results, we can conclude that K10, K23, and K32 amino acid residues play a critical role in protein-lipid interactions since their replacement on non-polar alanines strongly suppressed α-syn-lipid interactions.


Asunto(s)
Mutagénesis Sitio-Dirigida , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Amiloide/metabolismo , Amiloide/genética , Ácidos Grasos/metabolismo
2.
Mol Pharm ; 21(3): 1334-1341, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38373398

RESUMEN

Parkinson's disease (PD) is a severe pathology that is caused by a progressive degeneration of dopaminergic neurons in substantia nigra pars compacta as well as other areas in the brain. These neurodegeneration processes are linked to the abrupt aggregation of α-synuclein (α-syn), a small protein that is abundant at presynaptic nerve termini, where it regulates cell vesicle trafficking. Due to the direct interactions of α-syn with cell membranes, a substantial amount of work was done over the past decade to understand the role of lipids in α-syn aggregation. However, the role of phosphatidic acid (PA), a negatively charged phospholipid with a small polar head, remains unclear. In this study, we examined the effect of PA large unilamellar vesicles (LUVs) on α-syn aggregation. We found that PA LUVs with 16:0, 18:0, and 18:1 FAs drastically reduced the toxicity of α-syn fibrils if were present in a 1:1 molar ratio with the protein. Our results also showed that the presence of these vehicles changed the rate of α-syn aggregation and altered the morphology and secondary structure of α-syn fibrils. These results indicate that PA LUVs can be used as a potential therapeutic strategy to reduce the toxicity of α-syn fibrils formed upon PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Liposomas Unilamelares/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo
3.
J Phys Chem Lett ; 15(33): 8577-8583, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39140785

RESUMEN

A progressive aggregation of Tau proteins in the brain is linked to both Alzheimer's disease (AD) and various Tauopathies. This pathological process can be enhanced by several substances, including heparin. However, very little if anything is known about molecules that can inhibit the aggregation of Tau isoforms. In this study, we examined the effect of phosphatidylserines (PSs) with various lengths and saturations of fatty acids (FAs) on the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N-terminal inserts that enhance binding of Tau to tubulin. We found that PS with unsaturated and short-length FAs inhibited Tau aggregation and drastically lowered the toxicity of Tau oligomers that were formed in the presence of such phospholipids. Such an effect was not observed for PS with fully saturated long-chain FAs. These results suggest that a short-chain irreversible disbalance between saturated and unsaturated lipids in the brain could be the trigger of Tau aggregation.


Asunto(s)
Fosfolípidos , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Humanos , Fosfolípidos/química , Fosfolípidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Heparina/química , Heparina/farmacología , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
4.
Protein Sci ; 33(7): e5078, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38895991

RESUMEN

Alzheimer's disease is the fastest-growing neurodegenerative disease that affects over six million Americans. The abnormal aggregation of amyloid ß peptide and Tau protein is the expected molecular cause of the loss of neurons in brains of AD patients. A growing body of evidence indicates that lipids can alter the aggregation rate of amyloid ß peptide and modify the toxicity of amyloid ß aggregates. However, the role of lipids in Tau aggregation remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which phospatidylserine (PS) altered the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N terminal inserts that enhance the binding of Tau to tubulin. We found that the length and saturation of fatty acids (FAs) in PS altered the aggregation rate of 2N4R isoform, while no changes in the aggregation rate of 1N4R were observed. These results indicate that N terminal inserts play an important role in protein-lipid interactions. We also found that PS could change the toxicity of 1N4R and 2N4R Tau fibrils, as well as alter molecular mechanisms by which these aggregates exert cytotoxicity to neurons. Finally, we found that although Tau fibrils formed in the presence and absence of PS endocytosed by cells, only fibril species that were formed in the presence of PS exert strong impairment of the cell mitochondria.


Asunto(s)
Fosfatidilserinas , Tubulina (Proteína) , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/toxicidad , Humanos , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Unión Proteica , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Agregado de Proteínas , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química
5.
J Phys Chem Lett ; 15(17): 4761-4766, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38661515

RESUMEN

Heart tissue can experience a progressive accumulation of transthyretin (TTR), a small four subunit protein that transports holoretinol binding protein and thyroxine. This severe pathology is known as transthyretin amyloid cardiomyopathy. Numerous experimental studies indicated that the aggregation rate and toxicity of TTR fibrils could be altered by the presence of lipids; however, the role of plasmalogens in this process remains unknown. In this study, we investigate the effect of choline plasmalogens (CPs) with different lengths and saturations of fatty acids (FAs) on TTR aggregation. We found that CPs with saturated and unsaturated FAs strongly suppressed TTR aggregation. We also found that CPs with saturated FAs did not change the morphology of TTR fibrils; however, much thicker fibrillar species were formed in the presence of CPs with unsaturated FAs. Finally, we found that CPs with C16:0, C18:0, and C18:1 FAs substantially lowered the cytotoxicity of TTR fibrils that were formed in their presence.


Asunto(s)
Plasmalógenos , Prealbúmina , Prealbúmina/química , Prealbúmina/metabolismo , Plasmalógenos/metabolismo , Plasmalógenos/química , Humanos , Amiloide/química , Amiloide/metabolismo , Agregado de Proteínas/efectos de los fármacos , Ácidos Grasos/química , Ácidos Grasos/metabolismo
6.
RSC Adv ; 14(3): 1833-1837, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38192310

RESUMEN

Palmer amaranth (Amaranthus palmeri) is a pervasive and troublesome weed species that poses significant challenges to agriculture in the United States. Identifying the sex of Palmer amaranth plants is crucial for developing tailored control measures due to the distinct characteristics and reproductive strategies exhibited by male and female plants. Traditional methods for sex determination are expensive and time-consuming, but recent advancements in spectroscopic techniques offer new possibilities. This study explores the potential of portable Raman spectroscopy for determining the sex of mature Palmer amaranth plants in-field. Raman analysis of the plant leaves reveals spectral differences associated with nitrate salts, lipids, carotenoids, and terpenoids, allowing for high accuracy and reliable identification of the plant's sex; male plants had higher concentrations of these compounds compared to females. It was also found that male plants had higher concentrations of these compounds compared to the females. Raman spectra were analyzed using a machine learning tool, partial least squares discriminant analysis (PLS-DA), to generate accuracies of no less than 83.7% when elucidating sex from acquired spectra. These findings provide insights into the sex-specific characteristics of Palmer amaranth and suggest that Raman analysis, combined with PLS-DA, can be a promising, non-destructive, and efficient method for sex determination in field settings. This approach has implications for developing sex-specific management strategies to monitor and control this invasive weed in real-world environments, benefiting farmers, agronomists, researchers, and master gardeners.

7.
Biophys Chem ; 306: 107174, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211368

RESUMEN

The progressive aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including Parkinson's disease and injection and transthyretin amyloidosis. A growing body of evidence indicates that protein deposits detected in organs and tissues of patients diagnosed with such pathologies contain fragments of lipid membranes. In vitro experiments also showed that lipid membranes could strongly change the aggregation rate of amyloidogenic proteins, as well as alter the secondary structure and toxicity of oligomers and fibrils formed in their presence. In this review, the effect of large unilamellar vesicles (LUVs) composed of zwitterionic and anionic phospholipids on the aggregation rate of insulin, lysozyme, transthyretin (TTR) and α- synuclein (α-syn) will be discussed. The manuscript will also critically review the most recent findings on the lipid-induced changes in the secondary structure of protein oligomers and fibrils, as well as reveal the extent to which lipids could alter the toxicity of protein aggregates formed in their presence.


Asunto(s)
Amiloidosis , Enfermedad de Parkinson , Humanos , Agregado de Proteínas , Fosfolípidos/metabolismo , alfa-Sinucleína/química , Enfermedad de Parkinson/metabolismo , Amiloidosis/metabolismo , Proteínas Amiloidogénicas , Amiloide/química
8.
Protein Sci ; 32(12): e4838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37967043

RESUMEN

Transthyretin (TTR) amyloidosis is a progressive disease characterized by an abrupt aggregation of misfolded protein in multiple organs and tissues TTR is a tetrameric protein expressed in the liver and choroid plexus. Protein misfolding triggers monomerization of TTR tetramers. Next, monomers assemble forming oligomers and fibrils. Although the secondary structure of TTR fibrils is well understood, there is very little if anything is known about the structural organization of TTR oligomers. To end this, we used nano-infrared spectroscopy, also known as atomic force microscopy infrared (AFM-IR) spectroscopy. This emerging technique can be used to determine the secondary structure of individual amyloid oligomers and fibrils. Using AFM-IR, we examined the secondary structure of TTR oligomers formed at the early (3-6 h), middle (9-12 h), and late (28 h) of protein aggregation. We found that aggregating, TTR formed oligomers (Type 1) that were dominated by α-helix (40%) and ß-sheet (~30%) together with unordered protein (30%). Our results showed that fibril formation was triggered by another type of TTR oligomers (Type 2) that appeared at 9 h. These new oligomers were primarily composed of parallel ß-sheet (55%), with a small amount of antiparallel ß-sheet, α-helix, and unordered protein. We also found that Type 1 oligomers were not toxic to cells, whereas TTR fibrils formed at the late stages of protein aggregation were highly cytotoxic. These results show the complexity of protein aggregation and highlight the drastic difference in the protein oligomers that can be formed during such processes.


Asunto(s)
Prealbúmina , Agregado de Proteínas , Prealbúmina/química , Microscopía de Fuerza Atómica , Amiloide/química , Análisis Espectral
9.
Front Plant Sci ; 14: 1283399, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235194

RESUMEN

Tomato spotted wilt (TSW) disease caused by tomato spotted wilt orthotospovirus (TSWV, Orthotospovirus tomatomaculae) poses a significant threat to specialty and staple crops worldwide by causing over a billion dollars in crop losses annually. Current strategies for TSWV diagnosis heavily rely on nucleic acid or protein-based techniques which require significant technical expertise, and are invasive, time-consuming, and expensive, thereby catalyzing the search for better alternatives. In this study, we explored the potential of Raman spectroscopy (RS) in early detection of TSW in a non-invasive and non-destructive manner. Specifically, we investigated whether RS could be used to detect strain specific TSW symptoms associated with four TSWV strains infecting three differentially resistant tomato cultivars. In the acquired spectra, we observed notable reductions in the intensity of vibrational peaks associated with carotenoids. Using high-performance liquid chromatography (HPLC), we confirmed that TSWV caused a substantial decrease in the concentration of lutein that was detected by RS. Finally, we demonstrated that Partial Least Squares-Discriminant Analysis (PLS-DA) could be used to differentiate strain-specific TSW symptoms across all tested cultivars. These results demonstrate that RS can be a promising solution for early diagnosis of TSW, enabling timely disease intervention and thereby mitigating crop losses inflicted by TSWV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA