Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(27): 13330-13339, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31213532

RESUMEN

Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome. Here we show that SHOC2 complex-mediated S259 RAF dephosphorylation is critically required for growth factor-induced RAF heterodimerization as well as for MEK dissociation from BRAF. We also uncover SHOC2-independent mechanisms of RAF and ERK pathway activation that rely on N-region phosphorylation of CRAF. In DLD-1 cells stimulated with EGF, SHOC2 function is essential for a rapid transient phase of ERK activation, but is not required for a slow, sustained phase that is instead driven by palmitoylated H/N-RAS proteins and CRAF. Whereas redundant SHOC2-dependent and -independent mechanisms of RAF and ERK activation make SHOC2 dispensable for proliferation in 2D, KRAS mutant cells preferentially rely on SHOC2 for ERK signaling under anchorage-independent conditions. Our study highlights a context-dependent contribution of SHOC2 to ERK pathway dynamics that is preferentially engaged by KRAS oncogenic signaling and provides a biochemical framework for selective ERK pathway inhibition by targeting the SHOC2 holophosphatase.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas raf/química , Quinasas raf/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Línea Celular Tumoral , Edición Génica , Técnicas de Inactivación de Genes , Humanos , Fosforilación , Multimerización de Proteína , Proteínas ras/metabolismo
2.
Mol Cell ; 52(5): 679-92, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24211266

RESUMEN

SHOC2 is mutated in Noonan syndrome and plays a key role in the activation of the ERK-MAPK pathway, which is upregulated in the majority of human cancers. SHOC2 functions as a PP1-regulatory protein and as an effector of MRAS. Here we show that SHOC2 and MRAS form a complex with SCRIB, a polarity protein with tumor suppressor properties. SCRIB functions as a PP1-regulatory protein and antagonizes SHOC2-mediated RAF dephosphorylation through a mechanism involving competition for PP1 molecules within the same macromolecular complex. SHOC2 function is selectively required for the malignant properties of tumor cells with mutant RAS, and both MRAS and SHOC2 play a key role in polarized migration. We propose that MRAS, through its ability to recruit a complex with paradoxical components, coordinates ERK pathway spatiotemporal dynamics with polarity and that this complex plays a key role during tumorigenic growth.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor/genética , Proteínas ras/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular , Movimiento Celular/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sustancias Macromoleculares/metabolismo , Proteínas de la Membrana/metabolismo , Fosforilación , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(45): E10576-E10585, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348783

RESUMEN

Dephosphorylation of the inhibitory "S259" site on RAF kinases (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. The MRAS GTPase, a close relative of RAS oncoproteins, interacts with SHOC2 and protein phosphatase 1 (PP1) to form a heterotrimeric holoenzyme that dephosphorylates this S259 RAF site. MRAS and SHOC2 function as PP1 regulatory subunits providing the complex with striking specificity against RAF. MRAS also functions as a targeting subunit as membrane localization is required for efficient RAF dephosphorylation and ERK pathway regulation in cells. SHOC2's predicted structure shows remarkable similarities to the A subunit of PP2A, suggesting a case of convergent structural evolution with the PP2A heterotrimer. We have identified multiple regions in SHOC2 involved in complex formation as well as residues in MRAS switch I and the interswitch region that help account for MRAS's unique effector specificity for SHOC2-PP1. MRAS, SHOC2, and PPP1CB are mutated in Noonan syndrome, and we show that syndromic mutations invariably promote complex formation with each other, but not necessarily with other interactors. Thus, Noonan syndrome in individuals with SHOC2, MRAS, or PPPC1B mutations is likely driven at the biochemical level by enhanced ternary complex formation and highlights the crucial role of this phosphatase holoenzyme in RAF S259 dephosphorylation, ERK pathway dynamics, and normal human development.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Síndrome de Noonan/metabolismo , Proteína Fosfatasa 1/metabolismo , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Proteínas Portadoras , Línea Celular , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas , Modelos Moleculares , Mutación , Síndrome de Noonan/genética , Fosforilación , Proteína Fosfatasa 1/genética , Alineación de Secuencia , Proteínas ras/genética
4.
Am J Med Genet A ; 182(3): 597-606, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31825160

RESUMEN

The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas ras/genética , Enfermedades Genéticas Congénitas/patología , Mutación de Línea Germinal/genética , Humanos , Transducción de Señal/genética
5.
Cancer Cell ; 9(4): 243-4, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16616329

RESUMEN

H-Ras, N-Ras, and K-Ras proteins have distinct biological properties, despite ubiquitous expression and similar affinities for regulators and effectors. C-terminal hypervariable regions that distinguish H-Ras, N-Ras, and K-Ras proteins direct them to distinct membrane compartments, where they may encounter regulators and effectors at different local concentrations. Jura and coworkers now report that these membrane-targeting domains direct differential ubiquitination of Ras proteins and so provide a molecular mechanism to explain the sorting process and, perhaps, some of the dramatic differences in biological potency among H-Ras, N-Ras, and K-Ras proteins.


Asunto(s)
Transducción de Señal , Ubiquitina/metabolismo , Proteínas ras/metabolismo , Animales , Humanos , Unión Proteica , Proteínas ras/genética
6.
Cancer Cell ; 7(3): 205-6, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15766656

RESUMEN

Ras proteins send signals through multiple effector pathways. The Raf/MEK/MAPK and PI 3' kinase pathways are well-validated Ras effectors in human cancers, but many other candidate pathways could be equally important. RalGDS is such a candidate: in a new paper from Chris Marshall's group, an important role for RalGDS in Ras transformation in vivo has been established for the first time. Mice lacking RalGDS are defective in tumor formation, possibly because of increased apoptosis in Ras-driven tumors. The hunt for a clear role for RalGDS activation in human cancer is on.


Asunto(s)
Transducción de Señal/fisiología , Factor de Intercambio de Guanina Nucleótido ral/metabolismo , Proteínas ras/metabolismo , Animales , Humanos , Ratones , Neoplasias/metabolismo
7.
Cancer Cell ; 8(2): 111-8, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16098464

RESUMEN

The EphA2 receptor tyrosine kinase is frequently overexpressed in many cancers, including 40% of breast cancers. Here, we show that EphA2 is a direct transcriptional target of the Ras-Raf-MAPK pathway and that ligand-stimulated EphA2 attenuates the growth factor-induced activation of Ras. Thus, a negative feedback loop is created that regulates Ras activity. Interestingly, the expression of EphA2 and ephrin-A1 is mutually exclusive in a panel of 28 breast cancer cell lines. We show that the MAPK pathway inhibits ephrin-A1 expression, and the ligand expression inhibits EphA2 levels contributing to the receptor-ligand reciprocal expression pattern in these cell lines. Our results suggest that an escape from the negative effects of this interaction may be important in the development of cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación hacia Abajo , Receptor EphA2/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular Tumoral , Efrina-A1/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Células 3T3 NIH , Proteínas Oncogénicas v-erbB/metabolismo , Receptor EphA2/genética , Transducción de Señal , Transcripción Genética , Quinasas raf/metabolismo
8.
Nat Struct Mol Biol ; 29(10): 966-977, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36175670

RESUMEN

SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.


Asunto(s)
Síndrome de Noonan , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Fosfoserina/metabolismo , Proteína Fosfatasa 1 , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
9.
PLoS One ; 16(8): e0254697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34424918

RESUMEN

The PAF complex (PAFC) coordinates transcription elongation and mRNA processing and its CDC73/parafibromin subunit functions as a tumour suppressor. The NF2/Merlin tumour suppressor functions both at the cell cortex and nucleus and is a key mediator of contact inhibition but the molecular mechanisms remain unclear. In this study we have used affinity proteomics to identify novel Merlin interacting proteins and show that Merlin forms a complex with multiple proteins involved in RNA processing including the PAFC and the CHD1 chromatin remodeller. Tumour-derived inactivating mutations in both Merlin and the CDC73 PAFC subunit mutually disrupt their interaction and growth suppression by Merlin requires CDC73. Merlin interacts with the PAFC in a cell density-dependent manner and we identify a role for FAT cadherins in regulating the Merlin-PAFC interaction. Our results suggest that in addition to its function within the Hippo pathway, Merlin is part of a tumour suppressor network regulated by cell-cell adhesion which coordinates post-initiation steps of the transcription cycle of genes mediating contact inhibition.


Asunto(s)
Adhesión Celular/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Neoplasias/genética , Neurofibromina 2/genética , Proteínas Supresoras de Tumor/genética , Proliferación Celular/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Inhibición de Contacto/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Neoplasias/patología , Unión Proteica/genética , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética
10.
Mol Cell Biol ; 26(20): 7345-57, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16894031

RESUMEN

Oncogenic potential is associated with translational regulation, and the prevailing view is that oncogenes use mTOR-dependent pathways to up-regulate the synthesis of proteins critical for transformation. In this study, we show that RalA, a key mediator of Ras transformation, is also linked to the translational machinery. At least part of this linkage, however, is independent of mTOR and acts through RalBP1 to suppress cdc42-mediated activation of S6 kinase and the translation of the antiapoptotic protein FLIP(S). This action, rather than contributing to transformation, opens a latent tumor-suppressive mechanism that can be activated by tumor necrosis factor-related apoptosis-inducing ligand. These results show that the translational machinery is linked to tumor suppression as well as cell-proliferative pathways and that the reestablishment of cell death pathways by activation of the Ral oncogenic program provides a means for selective therapeutic targeting of Ral-driven malignancies.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Quinasas/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Muerte Celular , Línea Celular , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF , Serina-Treonina Quinasas TOR , Factor de Necrosis Tumoral alfa/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP ral/genética
11.
Nat Commun ; 10(1): 2532, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182717

RESUMEN

Targeted inhibition of the ERK-MAPK pathway, upregulated in a majority of human cancers, has been hindered in the clinic by drug resistance and toxicity. The MRAS-SHOC2-PP1 (SHOC2 phosphatase) complex plays a key role in RAF-ERK pathway activation by dephosphorylating a critical inhibitory site on RAF kinases. Here we show that genetic inhibition of SHOC2 suppresses tumorigenic growth in a subset of KRAS-mutant NSCLC cell lines and prominently inhibits tumour development in autochthonous murine KRAS-driven lung cancer models. On the other hand, systemic SHOC2 ablation in adult mice is relatively well tolerated. Furthermore, we show that SHOC2 deletion selectively sensitizes KRAS- and EGFR-mutant NSCLC cells to MEK inhibitors. Mechanistically, SHOC2 deletion prevents MEKi-induced RAF dimerization, leading to more potent and durable ERK pathway suppression that promotes BIM-dependent apoptosis. These results present a rationale for the generation of SHOC2 phosphatase targeted therapies, both as a monotherapy and to widen the therapeutic index of MEK inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Quinasas raf/metabolismo , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Noqueados , Ratones Desnudos , Mutación , Trasplante de Neoplasias , Multimerización de Proteína , Quinasas raf/antagonistas & inhibidores , Quinasas raf/genética , Proteínas ras/metabolismo
12.
Methods Enzymol ; 438: 277-89, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18413255

RESUMEN

Cardio-facio-cutaneous syndrome (CFC) is a sporadic, complex developmental disorder involving characteristic craniofacial features, cardiac defects, ectodermal abnormalities, growth deficiency, hypotonia, and developmental delay. CFC is caused by alteration of activity through the mitogen-activated protein kinase (MAPK) pathway due to heterogeneous de novo germline mutations in B-Raf mutant proteins, MEK1 and MEK2. Approximately 75% of individuals with CFC have mutations in BRAF. In vitro functional studies demonstrate that many of these mutations confer increase activity upon the mutant protein as compared to the wildtype protein. However, as is seen cancer, some of the B-Raf mutant proteins are kinase impaired. Western blot analyses corroborate kinase assays as determined by mutant proteins phosphorylating downstream effectors MEK and ERK. Approximately 25% of individuals with CFC have mutations in either MEK1 or MEK2 that lead to increased MEK kinase activity as judged by increased phosphorylation of its downstream effector ERK. Unlike BRAF, no somatic mutations have ever been identified in MEK genes. The identification of novel germline BRAF and MEK mutations in CFC will help understand the pathophysiology of this syndrome. Furthermore, it will also provide insight to the normal function of B-Raf and MEK, and contribute to the knowledge of the role of the MAPK pathway in cancer. Since the MAPK pathway has been studied intensively in the context of cancer, numerous therapeutics that specifically target this pathway may merit investigation in this population of patients.


Asunto(s)
Anomalías Craneofaciales/genética , Cardiopatías Congénitas/genética , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Proteínas Proto-Oncogénicas B-raf/genética , Anomalías Cutáneas/genética , Sustitución de Aminoácidos , Western Blotting , Humanos , Síndrome , Quinasas raf/análisis
13.
Artículo en Inglés | MEDLINE | ID: mdl-29311130

RESUMEN

MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member.


Asunto(s)
Diferenciación Celular/genética , Movimiento Celular/genética , Polaridad Celular/genética , Proteínas ras/genética , Carcinogénesis/genética , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Síndrome de Noonan/genética , Proteína Fosfatasa 1/metabolismo , Transducción de Señal , Proteínas ras/metabolismo
14.
Mol Cell Biol ; 24(11): 4943-54, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15143186

RESUMEN

Ras family GTPases (RFGs) regulate signaling pathways that control multiple biological processes. How signaling specificity among the closely related family members is achieved is poorly understood. We have taken a proteomics approach to signaling by RFGs, and we have analyzed interactions of a panel of RFGs with a comprehensive group of known and potential effectors. We have found remarkable differences in the ability of RFGs to regulate the various isoforms of known effector families. We have also identified several proteins as novel effectors of RFGs with differential binding specificities to the various RFGs. We propose that specificity among RFGs is achieved by the differential regulation of combinations of effector families as well as by the selective regulation of different isoforms within an effector family. An understanding of this new level of complexity in the signaling pathways regulated by RFGs is necessary to understand how they carry out their many cellular functions. It will also likely have critical implications in the treatment of human diseases such as cancer.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas ras/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas , Estructura Terciaria de Proteína , Especificidad por Sustrato/fisiología
15.
Methods Enzymol ; 407: 187-94, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16757324

RESUMEN

Ras family GTPases (RFGs), when in their active GTP-bound state, interact with a wide array of downstream effectors to regulate many biological functions in different cell types. How signal specificity among the closely related family members is achieved is still poorly understood. There is both promiscuity and specificity in the ability of RFGs to interact with and regulate the various effector families, as well as isoforms within those families. RFGs seem to have individual blueprints of effector interactions, and specificity should be considered in the context of the full spectrum of effectors they regulate. The sequencing of the genome has identified a remarkably diverse number of proteins with domains homologous to the Ras-binding domain (RBD) of known Ras effectors and, thus, with the potential to interact with Ras and/or other RFGs. In addition, other proteins without known RBD types are known to behave as RFG effectors, suggesting even more complexity in the number of effector interactions. Determining which of these many candidates are "true" effectors and characterizing their specificity is a critical step to understanding the specific signaling properties and biological functions of the various RFGs.


Asunto(s)
Proteínas ras/metabolismo , Animales , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Transfección , Quinasas raf/metabolismo
16.
EMBO Mol Med ; 5(7): 1087-102, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23681745

RESUMEN

Metastatic spread is the single-most powerful predictor of poor outcome in Ewing sarcoma (ES). Therefore targeting pathways that drive metastasis has tremendous potential to reduce the burden of disease in ES. We previously showed that activation of the ERBB4 tyrosine kinase suppresses anoikis, or detachment-induced cell death, and induces chemoresistance in ES cell lines in vitro. We now show that ERBB4 is transcriptionally overexpressed in ES cell lines derived from chemoresistant or metastatic ES tumours. ERBB4 activates the PI3K-Akt cascade and focal adhesion kinase (FAK), and both pathways contribute to ERBB4-mediated activation of the Rac1 GTPase in vitro and in vivo. ERBB4 augments tumour invasion and metastasis in vivo, and these effects are blocked by ERBB4 knockdown. ERBB4 expression correlates significantly with reduced disease-free survival, and increased expression is observed in metastatic compared to primary patient-matched ES biopsies. Our findings identify a novel ERBB4-PI3K-Akt-FAK-Rac1 pathway associated with aggressive disease in ES. These results predict that therapeutic targeting of ERBB4, alone or in combination with cytotoxic agents, may suppress the metastatic phenotype in ES.


Asunto(s)
Neoplasias Óseas/patología , Huesos/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Sarcoma de Ewing/patología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Huesos/metabolismo , Línea Celular Tumoral , Movimiento Celular , Activación Enzimática , Humanos , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-4 , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Transducción de Señal , Regulación hacia Arriba , Proteína de Unión al GTP rac1/metabolismo
17.
Cancer Res ; 68(19): 8127-36, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829572

RESUMEN

Mutations in genes functioning in different pathways frequently occur together in the same cancer, whereas mutations in the same pathway tend to be mutually exclusive. However, the majority of colon, breast, and endometrial cancers that possess mutations in PIK3CA, the catalytic subunit p110alpha of phosphatidylinositol 3'-kinase (PI3K), also possess mutations or alterations in genes upstream of PI3K such as Ras, ERBB2/ERBB3, or PTEN. PIK3CA mutations occur almost exclusively in invasive tumors, whereas upstream mutations occur as frequently in early-stage and late-stage tumors, suggesting that PIK3CA mutation is a late-stage event that may augment earlier activation of the PI3K pathway. Consistent with this, we find that levels of p-AKT (Ser(473)) induced by mutant Ras or knockdown of PTEN were dramatically increased by addition of mutant PIK3CA. Soft agar assays revealed that anchorage-independent growth induced by mutant Ras was greatly increased in the presence of mutant PIK3CA. In breast, colon, and endometrial cancers in which the PI3K pathway is activated by a combination of mutant PIK3CA and alterations in Ras, ERBB2/3, or PTEN, signaling to downstream elements such as Akt was mediated exclusively by the p110alpha isoform, rather than a combination of different PI3K isoforms. Our data therefore suggest that in tumors with co-occurring mutations in multiple components of the PI3K pathway, selective inhibition of the alpha isoform of p110 is an attractive therapeutic strategy, especially for late-stage tumors.


Asunto(s)
Transformación Celular Neoplásica/genética , Epigénesis Genética/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Análisis por Conglomerados , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes ras/fisiología , Humanos , Mutación/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética
18.
Proc Natl Acad Sci U S A ; 103(51): 19290-5, 2006 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17158797

RESUMEN

Binding of Src family kinases to membrane-associated polyoma virus middle T-antigen (PyMT) can result in the phosphorylation of PyMT tyrosine 250, which serves as a docking site for the binding of Shc and subsequent activation of the Raf-MEK-ERK (MAP) kinase cascade. In a screen for PyMT variants that could not activate the ARF tumor suppressor, we isolated a cytoplasmic nontransforming mutant (MTA) that encoded a C-terminal truncated form of the PyMT protein. Surprisingly, MTA was able to strongly activate the MAP kinase pathway in the absence of Src family kinase and Shc binding. Interestingly, the polyoma small T-antigen (PyST), which shares with MTA both partial amino acid sequence homology and cellular location, also activates the MAP kinase cascade. Activation of the MAP kinase cascade by both MTA and PyST has been demonstrated to be PP2A-dependent. Neither MTA nor PyST activate the phosphorylation of AKT. The SV40 small T-antigen, which is similar to PyST in containing a J domain and in binding to the PP2A AC dimer, does not activate the MAP kinase cascade, but does stimulate phosphorylation of AKT in a PP2A-dependent manner. These findings highlight a novel role of PP2A in stimulating the MAP kinase cascade and indicate that the similar polyoma and SV40 small T-antigens influence PP2A to activate discrete cellular signaling pathways involved in growth control.


Asunto(s)
Antígenos Transformadores de Poliomavirus/metabolismo , Proliferación Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Transducción de Señal/genética , Animales , Antígenos Transformadores de Poliomavirus/genética , Western Blotting , Línea Celular , Inmunoprecipitación , Mutación/genética , Fosforilación , Ratas
19.
Mol Cell ; 22(2): 217-30, 2006 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-16630891

RESUMEN

Ras family GTPases (RFGs) are known to share many regulatory and effector proteins. How signaling and biological specificity is achieved is poorly understood. Using a proteomics approach, we have identified a complex comprised of Shoc2/Sur-8 and the catalytic subunit of protein phosphatase 1 (PP1c) as a highly specific M-Ras effector. M-Ras targets Shoc2-PP1c to stimulate Raf activity by dephosphorylating the S259 inhibitory site of Raf proteins bound to other molecules of M-Ras or Ras. Therefore, distinct RFGs, through independent effectors, can regulate different steps in the activation of Raf kinases. Shoc2 function is essential for activation of the MAPK pathway by growth factors. Furthermore, in tumor cells with Ras gene mutations, inhibition of Shoc2 expression inhibits MAPK, but not PI3K activity. We propose that the Shoc2-PP1c holoenzyme provides an attractive therapeutic target for inhibition of the MAPK pathway in cancer.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Fosfoproteínas Fosfatasas/química , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Represoras/química , Proteínas ras/metabolismo , Western Blotting , Carcinoma/metabolismo , Carcinoma/patología , Dominio Catalítico , Línea Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Células HeLa , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Espectrometría de Masas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Pruebas de Precipitina , Proteína Fosfatasa 1 , Estructura Terciaria de Proteína , Proteómica/métodos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Retroviridae/genética , Proteínas ras/aislamiento & purificación
20.
Science ; 311(5765): 1287-90, 2006 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-16439621

RESUMEN

Cardio-facio-cutaneous (CFC) syndrome is a sporadic developmental disorder involving characteristic craniofacial features, cardiac defects, ectodermal abnormalities, and developmental delay. We demonstrate that heterogeneous de novo missense mutations in three genes within the mitogen-activated protein kinase (MAPK) pathway cause CFC syndrome. The majority of cases (18 out of 23) are caused by mutations in BRAF, a gene frequently mutated in cancer. Of the 11 mutations identified, two result in amino acid substitutions that occur in tumors, but most are unique and suggest previously unknown mechanisms of B-Raf activation. Furthermore, three of five individuals without BRAF mutations had missense mutations in either MEK1 or MEK2, downstream effectors of B-Raf. Our findings highlight the involvement of the MAPK pathway in human development and will provide a molecular diagnosis of CFC syndrome.


Asunto(s)
Anomalías Múltiples/genética , Mutación de Línea Germinal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Adolescente , Adulto , Sustitución de Aminoácidos , Niño , Preescolar , Anomalías Craneofaciales/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Trastornos del Crecimiento/genética , Cardiopatías Congénitas/genética , Humanos , Lactante , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 2/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación Missense , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Anomalías Cutáneas/genética , Síndrome , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA