Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37995657

RESUMEN

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Asunto(s)
Péptido Hidrolasas , Prurito , Receptor PAR-1 , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Ratones , Péptido Hidrolasas/metabolismo , Prurito/microbiología , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología
2.
Bioorg Med Chem ; 90: 117366, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329676

RESUMEN

Hura crepitans L. (Euphorbiaceae) is a thorn-covered tree widespread in South America, Africa and Asia which produces an irritating milky latex containing numerous secondary metabolites, notably daphnane-type diterpenes known as Protein Kinase C activators. Fractionation of a dichloromethane extract of the latex led to the isolation of five new daphnane diterpenes (1-5), along with two known analogs (6-7) including huratoxin. Huratoxin (6) and 4',5'-epoxyhuratoxin (4) were found to exhibit significant and selective cell growth inhibition against colorectal cancer cell line Caco-2 and primary colorectal cancer cells cultured as colonoids. The underlying mechanism of 4 and 6 was further investigated revealing the involvement of PKCζ in the cytostatic activity.


Asunto(s)
Neoplasias Colorrectales , Diterpenos , Euphorbiaceae , Humanos , Látex , Células CACO-2 , Diterpenos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico
3.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G609-G626, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283083

RESUMEN

Prenatal stress is associated with a high risk of developing adult intestinal pathologies, such as irritable bowel syndrome, chronic inflammation, and cancer. Although epithelial stem cells and progenitors have been implicated in intestinal pathophysiology, how prenatal stress could impact their functions is still unknown. We have investigated the proliferative and differentiation capacities of primitive cells using epithelial crypts isolated from colons of adult male and female mice whose mothers have been stressed during late gestation. Our results show that stem cell/progenitor proliferation and differentiation in vitro are negatively impacted by prenatal stress in male progeny. This is promoted by a reinforcement of the negative proliferative/differentiation control by the protease-activated receptor 2 (PAR2) and the muscarinic receptor 3 (M3), two G protein-coupled receptors present in the crypt. Conversely, prenatal stress does not change in vitro proliferation of colon primitive cells in female progeny. Importantly, this maintenance is associated with a functional switch in the M3 negative control of colonoid growth, becoming proliferative after prenatal stress. In addition, the proliferative role of PAR2 specific to females is maintained under prenatal stress, even though PAR2-targeted stress signals Dusp6 and activated GSK3ß are increased, reaching the levels of males. An epithelial serine protease could play a critical role in the activation of the survival kinase GSK3ß in colonoids from prenatally stressed female progeny. Altogether, our results show that following prenatal stress, colon primitive cells cope with stress through sexually dimorphic mechanisms that could pave the way to dysregulated crypt regeneration and intestinal pathologies.NEW & NOTEWORTHY Primitive cells isolated from mouse colon following prenatal stress and exposed to additional stress conditions such as in vitro culture, present sexually dimorphic mechanisms based on PAR2- and M3-dependent regulation of proliferation and differentiation. Whereas prenatal stress reinforces the physiological negative control exerted by PAR2 and M3 in crypts from males, in females, it induces a switch in M3- and PAR2-dependent regulation leading to a resistant and proliferative phenotype of progenitor.


Asunto(s)
Colon , Receptor PAR-2 , Masculino , Femenino , Ratones , Animales , Embarazo , Receptor PAR-2/genética , Glucógeno Sintasa Quinasa 3 beta , Células Madre , Receptores Acoplados a Proteínas G
4.
Bioorg Chem ; 103: 104132, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32768743

RESUMEN

Hura crepitans (Euphorbiaceae) is a tree from South America that produces an irritant latex used as a fish poison. A bio-guided fractionation of an ethanolic extract of the latex led to the isolation and structural identification of three known daphnane-type diterpenes (1-3) including huratoxin (1), together with two new analogs (4, 5). Compound 1 was found to exhibit significant and selective cell growth inhibition against the colorectal cancer cell line Caco-2, with morphological modifications suggesting formations mimicking the intestinal crypt architecture. The underlying mechanism of 1 was further investigated, in comparison with 12-O-tetradecanoylphorbol-13-acetate (TPA), revealing two different mechanisms.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos/farmacología , Euphorbiaceae/química , Látex/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Teoría Funcional de la Densidad , Diterpenos/química , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
5.
J Lipid Res ; 60(3): 636-647, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30626624

RESUMEN

Inside the human host, Leishmania infection starts with phagocytosis of infective promastigotes by macrophages. In order to survive, Leishmania has developed several strategies to manipulate macrophage functions. Among these strategies, Leishmania as a source of bioactive lipids has been poorly explored. Herein, we assessed the biosynthesis of polyunsaturated fatty acid metabolites by infective and noninfective stages of Leishmania and further explored the role of these metabolites in macrophage polarization. The concentration of docosahexaenoic acid metabolites, precursors of proresolving lipid mediators, was increased in the infective stage of the parasite compared with the noninfective stage, and cytochrome P450-like proteins were shown to be implicated in the biosynthesis of these metabolites. The treatment of macrophages with lipids extracted from the infective forms of the parasite led to M2 macrophage polarization and blocked the differentiation into the M1 phenotype induced by IFN-γ. In conclusion, Leishmania polyunsaturated fatty acid metabolites, produced by cytochrome P450-like protein activity, are implicated in parasite/host interactions by promoting the polarization of macrophages into a proresolving M2 phenotype.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Interacciones Huésped-Parásitos , Leishmania/fisiología , Animales , Células CHO , Cricetulus , Leishmania/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
6.
Int J Cancer ; 145(2): 494-502, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30628725

RESUMEN

The Focal adhesion kinase (FAK) is a ubiquitous cytoplasmic tyrosine-kinase promoting tumor progression and metastasis processes by acting in cancer cells and their tumor microenvironment partners. FAK overexpression in primary colon tumors and their metastasis is associated to poor colorectal cancer (CRC) patients' outcome. Eight FAK mRNA alternative splice variants have been described and contribute to additional level of FAK activity regulation, some of them corresponding to overactivated FAK isoforms. To date, FAK mRNA alternative splice variants expression and implication in CRC processes remain unknown. Here, using different human CRC cells lines displaying differential invasive capacities in an in vivo murine model recapitulating the different steps of CRC development from primary tumors to liver and lung metastasis, we identified three out of the eight mRNA variants (namely FAK0 , FAK28 and FAK6 ) differentially expressed along the CRC process and the tumor sites. Our results highlight an association between FAK0 and FAK6 expressions and the metastatic potential of the most aggressive cell lines HT29 and HCT116, suggesting that FAK0 and FAK6 could represent aggressiveness markers in CRC. Our findings also suggest a more specific role for FAK28 in the interactions between the tumors cells and their microenvironment. In conclusion, targeting FAK0 , the common form of FAK, might not be a good strategy based on the numerous roles of this kinase in physiological processes. In contrast, FAK6 or FAK28 splice variants, or their corresponding protein isoforms, may putatively represent future therapeutic target candidates in the development of CRC primary tumors and metastasis.


Asunto(s)
Empalme Alternativo , Neoplasias Colorrectales/patología , Quinasa 1 de Adhesión Focal/genética , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Animales , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Invasividad Neoplásica , Trasplante de Neoplasias , Isoformas de ARN/genética , Regulación hacia Arriba
7.
Am J Physiol Gastrointest Liver Physiol ; 311(2): G221-36, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27313176

RESUMEN

Protease-activated receptors PAR1 and PAR2 play an important role in the control of epithelial cell proliferation and migration. However, the survival of normal and tumor intestinal stem/progenitor cells promoted by proinflammatory mediators may be critical in oncogenesis. The glycogen synthase kinase-3ß (GSK3ß) pathway is overactivated in colon cancer cells and promotes their survival and drug resistance. We thus aimed to determine PAR1 and PAR2 effects on normal and tumor intestinal stem/progenitor cells and whether they involved GSK3ß. First, PAR1 and PAR2 were identified in colon stem/progenitor cells by immunofluorescence. In three-dimensional cultures of murine crypt units or single tumor Caco-2 cells, PAR2 activation decreased numbers and size of normal or cancerous spheroids, and PAR2-deficient spheroids showed increased proliferation, indicating that PAR2 represses proliferation. PAR2-stimulated normal cells were more resistant to stress (serum starvation or spheroid passaging), suggesting prosurvival effects of PAR2 Accordingly, active caspase-3 was strongly increased in PAR2-deficient normal spheroids. PAR2 but not PAR1 triggered GSK3ß activation through serine-9 dephosphorylation in normal and tumor cells. The PAR2-triggered GSK3ß activation implicates an arrestin/PP2A/GSK3ß complex that is dependent on the Rho kinase activity. Loss of PAR2 was associated with high levels of GSK3ß nonactive form, strengthening the role of PAR2 in GSK3ß activation. GSK3 pharmacological inhibition impaired the survival of PAR2-stimulated spheroids and serum-starved cells. Altogether our data identify PAR2/GSK3ß as a novel pathway that plays a critical role in the regulation of stem/progenitor cell survival and proliferation in normal colon crypts and colon cancer.


Asunto(s)
Colon/enzimología , Células Epiteliales/enzimología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Madre Neoplásicas/enzimología , Receptor PAR-2/metabolismo , Células Madre/enzimología , Animales , Arrestina/metabolismo , Células CACO-2 , Proliferación Celular , Supervivencia Celular , Colon/patología , Activación Enzimática , Células Epiteliales/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Células Madre Neoplásicas/patología , Fosforilación , Proteína Fosfatasa 2/metabolismo , Interferencia de ARN , Receptor PAR-2/genética , Transducción de Señal , Esferoides Celulares , Nicho de Células Madre , Células Madre/patología , Transfección , Microambiente Tumoral , Quinasas Asociadas a rho/metabolismo
8.
Gastroenterology ; 149(2): 433-44.e7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25911511

RESUMEN

BACKGROUND & AIMS: In mice, activation of the transient receptor potential cation channels (TRP) TRPV1, TRPV4, and TRPA1 causes visceral hypersensitivity. These receptors and their agonists might be involved in development of irritable bowel syndrome (IBS). We investigated whether polyunsaturated fatty acid (PUFA) metabolites, which activate TRPs, are present in colon tissues from patients with IBS and act as endogenous agonists to induce hypersensitivity. METHODS: We analyzed colon biopsy samples from 40 patients with IBS (IBS biopsies) and 11 healthy individuals undergoing colorectal cancer screening (controls), collected during colonoscopy at the University of Bologna, Italy. Levels of the PUFA metabolites that activate TRPV1 (12-hydroperoxyeicosatetraenoic acid, 15-hydroxyeicosatetraenoic acid, 5-hydroxyeicosatetraenoic acid, and leukotriene B4), TRPV4 (5,6-epoxyeicosatrienoic acid [EET] and 8,9-EET), and TRPA1 (PGA1, 8-iso-prostaglandin A2, and 15-deoxy-Δ-prostaglandin J2) were measured in biopsies and their supernatants using liquid chromatography and tandem mass spectrometry; we also measured levels of the PUFA metabolites prostaglandin E2 (PGE2) and resolvins. C57Bl6 mice were given intrathecal injections of small interfering RNAs to reduce levels of TRPV4, or control small interfering RNAs, along with colonic injections of biopsy supernatants; visceral hypersensitivity was measured based on response to colorectal distension. Mouse sensory neurons were cultured and incubated with biopsy supernatants and lipids extracted from biopsies or colons of mice. Immunohistochemistry was used to detect TRPV4 in human dorsal root ganglia samples (from the National Disease Research Interchange). RESULTS: Levels of the TRPV4 agonist 5,6-EET, but not levels of TRPV1 or TRPA1 agonists, were increased in IBS biopsies compared with controls; increases correlated with pain and bloating scores. Supernatants from IBS biopsies, but not from controls, induced visceral hypersensitivity in mice. Small interfering RNA knockdown of TRPV4 in mouse primary afferent neurons inhibited the hypersensitivity caused by supernatants from IBS biopsies. Levels of 5,6-EET and 15-HETE were increased in colons of mice with, but not without, visceral hypersensitivity. PUFA metabolites extracted from IBS biopsies or colons of mice with visceral hypersensitivity activated mouse sensory neurons in vitro, by activating TRPV4. Mouse sensory neurons exposed to supernatants from IBS biopsies produced 5,6-EET via a mechanism that involved the proteinase-activated receptor-2 and cytochrome epoxygenase. In human dorsal root ganglia, TPV4 was expressed by 35% of neurons. CONCLUSIONS: Colon tissues from patients with IBS have increased levels of specific PUFA metabolites. These stimulate sensory neurons from mice and generate visceral hypersensitivity via activation of TRPV4.


Asunto(s)
Canales de Calcio/metabolismo , Colon/metabolismo , Ácidos Grasos Insaturados/metabolismo , Síndrome del Colon Irritable/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Adulto , Anciano , Animales , Biopsia , Cromatografía Liquida , Colon/citología , Colon/inervación , Dinoprostona/metabolismo , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Italia , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , ARN Interferente Pequeño/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Canal Catiónico TRPA1 , Espectrometría de Masas en Tándem , Adulto Joven
9.
Sci Rep ; 14(1): 15160, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956132

RESUMEN

In order to survive and replicate, Salmonella has evolved mechanisms to gain access to intestinal epithelial cells of the crypt. However, the impact of Salmonella Typhimurium on stem cells and progenitors, which are responsible for the ability of the intestinal epithelium to renew and protect itself, remains unclear. Given that intestinal organoids growth is sustained by stem cells and progenitors activity, we have used this model to document the effects of Salmonella Typhimurium infection on epithelial proliferation and differentiation, and compared it to an in vivo model of Salmonella infection in mice. Among gut segments, the caecum was preferentially targeted by Salmonella. Analysis of infected crypts and organoids demonstrated increased length and size, respectively. mRNA transcription profiles of infected crypts and organoids pointed to upregulated EGFR-dependent signals, associated with a decrease in secretory cell lineage differentiation. To conclude, we show that organoids are suited to mimic the impact of Salmonella on stem cells and progenitors cells, carrying a great potential to drastically reduce the use of animals for scientific studies on that topic. In both models, the EGFR pathway, crucial to stem cells and progenitors proliferation and differentiation, is dysregulated by Salmonella, suggesting that repeated infections might have consequences on crypt integrity and further oncogenesis.


Asunto(s)
Diferenciación Celular , Receptores ErbB , Organoides , Infecciones por Salmonella , Salmonella typhimurium , Células Madre , Animales , Organoides/microbiología , Células Madre/metabolismo , Ratones , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/fisiología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Receptores ErbB/metabolismo , Receptores ErbB/genética , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Proliferación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
10.
Br J Pharmacol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637276

RESUMEN

BACKGROUND AND PURPOSE: Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH: The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS: We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS: Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.

11.
Am J Pathol ; 180(1): 141-52, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22067907

RESUMEN

Proteases and proteinase-activated receptor (PAR) activation are involved in several intestinal inflammatory conditions. We hypothesized that serine proteases and PAR activation could also modulate the intestinal injury induced by ischemia-reperfusion (I-R). C57Bl/6 mice were subjected to 90 minutes of intestinal ischemia followed or not by reperfusion. Sham-operated animals served as controls. After ischemia, plasma and tissue serine protease activity levels were increased compared to the activity measured in plasma and tissues from sham-operated mice. This increase was maintained or further enhanced after 2 and 5 hours of reperfusion, respectively. Trypsin (25 kDa) was detected in tissues both after ischemia and 2 hours of reperfusion. Treatment with FUT-175 (10 mg/kg), a potent serine protease inhibitor, increased survival after I-R, inhibited tissue protease activity, and significantly decreased intestinal myeloperoxidase (MPO) activity and chemokine and adhesion molecule expression. We investigated whether serine proteases modulate granulocyte recruitment by a PAR-dependent mechanism. MPO levels and adhesion molecule expression were significantly reduced in I-R groups pre-treated with the PAR(1) antagonist SCH-79797 (5 mg/kg) and in Par(2)(-/-)mice, compared, respectively, to vehicle-treated group and wild-type littermates. Thus, increased proteolytic activity and PAR activation play a pathogenic role in intestinal I-R injury. Inhibition of PAR-activating serine proteases could be beneficial to reduce post-ischemic intestinal inflammation.


Asunto(s)
Granulocitos/fisiología , Intestino Delgado/irrigación sanguínea , Isquemia/enzimología , Daño por Reperfusión/prevención & control , Inhibidores de Serina Proteinasa/farmacología , Animales , Benzamidinas , Quimiocinas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Granulocitos/enzimología , Guanidinas/farmacología , Isquemia/patología , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo , Inhibidores de Proteasas/farmacología , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología , Tripsina/metabolismo , alfa-Macroglobulinas/metabolismo
12.
Gastroenterology ; 140(1): 275-85, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20888819

RESUMEN

BACKGROUND & AIMS: Ligand-gated calcium channels have been reported to be involved in the pathogenesis of inflammatory bowel disease. One family member, transient receptor potential vanilloid 4 (TRPV4), is activated by arachidonic acid derivatives that might be released on inflammation, yet its role in gastrointestinal inflammation has not been characterized. We investigated whether TRPV4 activation participates in intestinal inflammation and its expression and functions in the gastrointestinal tract. METHODS: TRPV4 expression was studied in human colon samples, human intestinal epithelial cell lines (Caco-2 and T84), and inflamed colons of mice. Calcium mobilization and cytokine release were analyzed in intestinal epithelial cells exposed to the selective TRPV4 agonist 4α-phorbol-12,13-didecanoate (4αPDD). Mice were killed 3, 6, or 24 hours after intracolonic administration of 4αPDD; inflammatory parameters were measured in their colon tissues, and paracellular colonic permeability was measured by the passage of (51)Cr-EDTA from the colon lumen to the blood. RESULTS: High levels of TRPV4 were detected in Caco-2 cells and in epithelial cells of human colon tissue samples; its expression was up-regulated in colons from inflamed mice compared with noninflamed control mice. Administration of 4αPDD to Caco-2 and T84 cells caused a dose-dependent increase in intracellular calcium concentration and chemokine release. In mice, intracolonic administration of 4αPDD caused colitis to develop 3 to 6 hours later; inflammation resolved by 24 hours. Increased colonic permeability was observed in vivo 3 hours after intracolonic administration of 4αPDD. CONCLUSIONS: TRPV4 is expressed and functional in intestinal epithelial cells; its activation in the gastrointestinal tract causes increases in intracellular calcium concentrations, chemokine release, and colitis.


Asunto(s)
Colitis/inmunología , Intestinos/inmunología , Canales Catiónicos TRPV/inmunología , Animales , Células CACO-2 , Línea Celular , Quimiocinas/metabolismo , Colitis/inducido químicamente , Humanos , Intestinos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ésteres del Forbol/toxicidad , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/análisis
13.
Gastroenterology ; 140(4): 1272-82, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21199654

RESUMEN

BACKGROUND & AIMS: Colonic tissues of patients with inflammatory bowel disease have been reported to have increased proteolytic activity, but no studies have clearly addressed the role of the balance between proteases and antiproteases in the pathogenesis of colitis. We investigated the role of Elafin, a serine protease inhibitor expressed by skin and mucosal surfaces in human inflammatory conditions, and the proteases neutrophil elastase (NE) and proteinase-3 (PR-3) in mice with colitis. METHODS: We studied mice with heterozygous disruptions in NE and PR-3, mice that express human elafin (an inhibitor of NE and PR-3), and naïve mice that received intracolonic adenoviral vectors that express elafin. Trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulphate (DSS) was used to induce colitis. Protease, cytokine levels, and NF-κB activity were measured in colons of mice. Caco-2 and HT29 cells were studied in assays for cytokine expression, permeability, and NF-κB activity. RESULTS: Elafin expression or delivery re-equilibrated the proteolytic balance in inflamed colons of mice. In mice given TNBS or DSS, transgenic expression of elafin or disruption of NE and PR-3 protected against the development of colitis. Similarly, adenoviral delivery of Elafin significantly inhibited inflammatory parameters. Elafin modulated a variety of inflammatory mediators in vitro and in vivo and strengthened intestinal epithelial barrier functions. CONCLUSIONS: The protease inhibitor Elafin prevents intestinal inflammation in mouse models of colitis and might be developed as a therapeutic agent for inflammatory bowel disease.


Asunto(s)
Colitis , Elafina/genética , Terapia Genética/métodos , Elastasa de Leucocito/metabolismo , Inhibidores de Proteasas/metabolismo , Adenoviridae/genética , Animales , Células CACO-2 , Quimiocinas/metabolismo , Colitis/genética , Colitis/metabolismo , Colitis/terapia , Citocinas/metabolismo , Elafina/metabolismo , Expresión Génica/fisiología , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Mieloblastina/metabolismo , FN-kappa B/metabolismo , Neutrófilos/enzimología , Neutrófilos/inmunología , Inhibidores de Serina Proteinasa/metabolismo
14.
Hum Mutat ; 32(7): 751-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21394827

RESUMEN

Abetalipoproteinemia is a rare autosomal recessive disease characterized by low lipid levels and by the absence of apoB-containing lipoproteins. It is the consequence of microsomal triglyceride transfer protein (MTTP) deficiency. We report two patients with new MTTP mutations. We studied their functional consequences on the triglyceride transfer function using duodenal biopsies. We transfected MTTP mutants in HepG2 and HeLa cells to investigate their association with protein disulfide isomerase (PDI) and their localization at the endoplasmic reticulum. These children have a severe abetalipoproteinemia. Both of them had also a mild hypogammaglobulinemia. They are compound heterozygotes with c.619G>T and c.1237-28A>G mutations within the MTTP gene. mRNA analysis revealed abnormal splicing with deletion of exon 6 and 10, respectively. Deletion of exon 6 (Δ6-MTTP) introduced a frame shift in the reading frame and a premature stop codon at position 234. Despite the fact that Δ6-MTTP and Δ10-MTTP mutants were not capable of binding PDI, both MTTP mutant proteins normally localize at the endoplasmic reticulum. However, these two mutations induce a loss of MTTP triglyceride transfer activity. These two mutations lead to abnormal truncated MTTP proteins, incapable of binding PDI and responsible for the loss of function of MTTP, thereby explaining the severe abetalipoproteinemia phenotype of these children.


Asunto(s)
Abetalipoproteinemia/genética , Abetalipoproteinemia/patología , Proteínas Portadoras/genética , Exones/genética , Agammaglobulinemia/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Niño , Retículo Endoplásmico/metabolismo , Femenino , Células HeLa , Células Hep G2 , Humanos , Lactante , Masculino , Microsomas/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Triglicéridos/metabolismo
15.
J Immunol ; 183(6): 3848-57, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19710470

RESUMEN

Human Vgamma9Vdelta2 T lymphocytes recognize phosphorylated alkyl Ags. Isopentenyl pyrophosphate (IPP) was previously proposed as the main Ag responsible for Vgamma9Vdelta2 T cell activation by cancer cells. However, triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester (ApppI), a metabolite in which the isopentenyl moiety is linked to ATP, was reported in cells activated with aminobisphosphonates. The contribution of this compound to tumor-stimulatory activity was thus examined. ApppI induces selective expansion of Vgamma9Vdelta2 T cells from PBMCs. In the absence of APCs, however, ApppI has little stimulatory activity on Vgamma9Vdelta2 T cells, and optimal activation with ApppI requires addition of a nucleotide pyrophosphatase releasing IPP plus AMP. Thus, ApppI has no intrinsic stimulatory activity. Nevertheless, stimulation by ApppI is strengthened by the presence of APCs. Moreover, in contrast to IPP, ApppI can be efficiently pulsed on dendritic cells as well as on nonprofessional APCs. Pulsed APCs display stable and phosphatase-resistant stimulatory activity, indicative of Ag modification. HPLC analysis of tumor cell extracts indicates that latent phosphoantigenic activity is stored intracellularly in the Vgamma9Vdelta2 cell-sensitive tumor Daudi and can be activated by a nucleotide pyrophosphatase activity. The presence of ApppI in Daudi cell extracts was demonstrated by mass spectrometry. Nucleotidic Ags such as ApppI are thus a storage form of phosphoantigen which may represent a major source of phosphoantigenic activity in tumor cells. The unique properties of ApppI may be important for the design of Ags used in anticancer immunotherapeutic protocols using Vgamma9Vdelta2 cells.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Compuestos Organofosforados/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Adenosina Monofosfato , Adenosina Trifosfato/inmunología , Células Presentadoras de Antígenos/inmunología , Línea Celular Tumoral , Células Cultivadas , Difosfonatos , Hemiterpenos/inmunología , Humanos , Linfoma de Células B/inmunología , Linfoma de Células B/patología
16.
Mucosal Immunol ; 14(3): 667-678, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674762

RESUMEN

Imbalance between proteases and their inhibitors plays a crucial role in the development of Inflammatory Bowel Diseases (IBD). Increased elastolytic activity is observed in the colon of patients suffering from IBD. Here, we aimed at identifying the players involved in elastolytic hyperactivity associated with IBD and their contribution to the disease. We revealed that epithelial cells are a major source of elastolytic activity in healthy human colonic tissues and this activity is greatly increased in IBD patients, both in diseased and distant sites of inflammation. This study identified a previously unrevealed production of elastase 2A (ELA2A) by colonic epithelial cells, which was enhanced in IBD patients. We demonstrated that ELA2A hyperactivity is sufficient to lead to a leaky epithelial barrier. Epithelial ELA2A hyperactivity also modified the cytokine gene expression profile with an increase of pro-inflammatory cytokine transcripts, while reducing the expression of pro-resolving and repair factor genes. ELA2A thus appears as a novel actor produced by intestinal epithelial cells, which can drive inflammation and loss of barrier function, two essentials pathophysiological hallmarks of IBD. Targeting ELA2A hyperactivity should thus be considered as a potential target for IBD treatment.


Asunto(s)
Colon/patología , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Elastasa de Leucocito/metabolismo , Adulto , Citocinas/genética , Citocinas/metabolismo , Femenino , Humanos , Inmunidad Mucosa , Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Uniones Estrechas/metabolismo , Regulación hacia Arriba
17.
J Crohns Colitis ; 15(9): 1528-1541, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33609354

RESUMEN

BACKGROUND AND AIMS: Intestinal epithelial cells [IECs] from inflammatory bowel disease [IBD] patients exhibit an excessive induction of endoplasmic reticulum stress [ER stress] linked to altered intestinal barrier function and inflammation. Colonic tissues and the luminal content of IBD patients are also characterized by increased serine protease activity. The possible link between ER stress and serine protease activity in colitis-associated epithelial dysfunctions is unknown. We aimed to study the association between ER stress and serine protease activity in enterocytes and its impact on intestinal functions. METHODS: The impact of ER stress induced by Thapsigargin on serine protease secretion was studied using either human intestinal cell lines or organoids. Moreover, treating human intestinal cells with protease-activated receptor antagonists allowed us to investigate ER stress-resulting molecular mechanisms that induce proteolytic activity and alter intestinal epithelial cell biology. RESULTS: Colonic biopsies from IBD patients exhibited increased epithelial trypsin-like activity associated with elevated ER stress. Induction of ER stress in human intestinal epithelial cells displayed enhanced apical trypsin-like activity. ER stress-induced increased trypsin activity destabilized intestinal barrier function by increasing permeability and by controlling inflammatory mediators such as C-X-C chemokine ligand 8 [CXCL8]. The deleterious impact of ER stress-associated trypsin activity was specifically dependent on the activation of protease-activated receptors 2 and 4. CONCLUSIONS: Excessive ER stress in IECs caused an increased release of trypsin activity that, in turn, altered intestinal barrier function, promoting the development of inflammatory process.


Asunto(s)
Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Estrés del Retículo Endoplásmico/fisiología , Enterocitos/fisiología , Absorción Intestinal/fisiología , Tripsina/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Colitis Ulcerosa/etiología , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/etiología , Enfermedad de Crohn/metabolismo , Humanos , Organoides , Tapsigargina
18.
Arterioscler Thromb Vasc Biol ; 29(7): 1125-30, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19372457

RESUMEN

OBJECTIVE: Several findings argue for a protective effect of high-density lipoproteins (HDLs) against endothelial dysfunction. The molecular mechanisms underlying this protective effect are not fully understood, although recent works suggest that the actions of HDL on the endothelium are initiated by multiple interactions between HDLs (lipid or protein moiety) and cell surface receptors. We previously showed that the mitochondrial related F(1)-ATPase is a cell surface receptor for HDLs and their main atheroprotective apolipoprotein (apoA-I). Herein we test the hypothesis that the cell surface F(1)-ATPase may contribute to the ability of apoA-I and HDLs to maintain endothelial cell survival. METHODS AND RESULTS: Cell imaging and binding assays confirmed the presence of the F(1)-ATPase at the surface of human umbilical vein endothelial cells (HUVECs) and its ability to bind apoA-I. Cell surface F(1)-ATPase activity (ATP hydrolysis into ADP) was stimulated by apoA-I and was inhibited by its specific inhibitor IF(1)-H49K. Furthermore the antiapoptotic and proliferative effects of apoA-I on HUVECs were totally blocked by the F(1)-ATPase ligands IF(1)-H49K, angiostatin and anti-betaF(1)-ATPase antibody, independently of the scavenger receptor SR-BI and ABCA1. CONCLUSIONS: This study suggests an important contribution of cell surface F(1)-ATPase to apoA-I-mediated endothelial cell survival, which may contribute to the atheroprotective functions of apoA-I.


Asunto(s)
Apolipoproteína A-I/fisiología , Apoptosis/fisiología , Proliferación Celular , Células Endoteliales/fisiología , ATPasas de Translocación de Protón/fisiología , Células Cultivadas , Humanos , Venas Umbilicales/citología
19.
Biol Sex Differ ; 10(1): 47, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492202

RESUMEN

BACKGROUND: Sexual dimorphism in biological responses is a critical knowledge for therapeutic proposals. However, gender differences in intestinal stem cell physiology have been poorly studied. Given the important role of the protease-activated receptor PAR2 in the control of colon epithelial primitive cells and cell cycle genes, we have performed a sex-based comparison of its expression and of the effects of PAR2 activation or knockout on cell proliferation and survival functions. METHODS: Epithelial primitive cells isolated from colons from male and female mice were cultured as colonoids, and their number and size were measured. PAR2 activation was triggered by the addition of SLIGRL agonist peptide in the culture medium. PAR2-deficient mice were used to study the impact of PAR2 expression on colon epithelial cell culture and gene expression. RESULTS: Colonoids from female mice were more abundant and larger compared to males, and these differences were further increased after PAR2 activation by specific PAR2 agonist peptide. The proliferation of male epithelial cells was lower compared to females but was specifically increased in PAR2 knockout male cells. PAR2 expression was higher in male colon cells compared to females and controlled the gene expression and activation of key negative signals of the primitive cell proliferation. This PAR2-dependent brake on the proliferation of male colon primitive cells was correlated with stress resistance. CONCLUSIONS: Altogether, these data demonstrate that there is a sexual dimorphism in the PAR2-dependent regulation of primitive cells of the colon crypt.


Asunto(s)
Colon/citología , Receptor PAR-2/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides/fisiología , Receptor PAR-2/genética , Caracteres Sexuales
20.
Nat Commun ; 10(1): 1198, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867416

RESUMEN

Microbe-host interactions are generally homeostatic, but when dysfunctional, they can incite food sensitivities and chronic diseases. Celiac disease (CeD) is a food sensitivity characterized by a breakdown of oral tolerance to gluten proteins in genetically predisposed individuals, although the underlying mechanisms are incompletely understood. Here we show that duodenal biopsies from patients with active CeD have increased proteolytic activity against gluten substrates that correlates with increased Proteobacteria abundance, including Pseudomonas. Using Pseudomonas aeruginosa producing elastase as a model, we show gluten-independent, PAR-2 mediated upregulation of inflammatory pathways in C57BL/6 mice without villus blunting. In mice expressing CeD risk genes, P. aeruginosa elastase synergizes with gluten to induce more severe inflammation that is associated with moderate villus blunting. These results demonstrate that proteases expressed by opportunistic pathogens impact host immune responses that are relevant to the development of food sensitivities, independently of the trigger antigen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedad Celíaca/inmunología , Proteínas en la Dieta/inmunología , Interacciones Microbiota-Huesped/inmunología , Metaloendopeptidasas/metabolismo , Receptor PAR-2/inmunología , Adulto , Anciano , Animales , Antígenos/inmunología , Antígenos/metabolismo , Proteínas Bacterianas/genética , Biopsia , Estudios de Casos y Controles , Enfermedad Celíaca/diagnóstico por imagen , Enfermedad Celíaca/microbiología , Enfermedad Celíaca/patología , Estudios de Cohortes , Colonoscopía , Proteínas en la Dieta/metabolismo , Modelos Animales de Enfermedad , Duodeno/inmunología , Duodeno/metabolismo , Duodeno/microbiología , Duodeno/patología , Femenino , Microbioma Gastrointestinal/inmunología , Vida Libre de Gérmenes , Glútenes/inmunología , Glútenes/metabolismo , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/metabolismo , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Metaloendopeptidasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Persona de Mediana Edad , Proteolisis , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/metabolismo , Receptor PAR-2/metabolismo , Regulación hacia Arriba , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA