Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Syst ; 12(8): 827-838.e5, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34146471

RESUMEN

The accurate identification and quantitation of RNA isoforms present in the cancer transcriptome is key for analyses ranging from the inference of the impacts of somatic variants to pathway analysis to biomarker development and subtype discovery. The ICGC-TCGA DREAM Somatic Mutation Calling in RNA (SMC-RNA) challenge was a crowd-sourced effort to benchmark methods for RNA isoform quantification and fusion detection from bulk cancer RNA sequencing (RNA-seq) data. It concluded in 2018 with a comparison of 77 fusion detection entries and 65 isoform quantification entries on 51 synthetic tumors and 32 cell lines with spiked-in fusion constructs. We report the entries used to build this benchmark, the leaderboard results, and the experimental features associated with the accurate prediction of RNA species. This challenge required submissions to be in the form of containerized workflows, meaning each of the entries described is easily reusable through CWL and Docker containers at https://github.com/SMC-RNA-challenge. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Isoformas de Proteínas/genética , ARN/genética , RNA-Seq , Análisis de Secuencia de ARN
2.
PLoS One ; 7(12): e51697, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284747

RESUMEN

Oxidative damage to DNA is mainly repaired via base excision repair, a pathway that is catalyzed by DNA glycosylases such as 8-oxoguanine DNA glycosylase (OGG1). While OGG1 has been implicated in maintaining genomic integrity and preventing tumorigenesis, we report a novel role for OGG1 in altering cellular and whole body energy homeostasis. OGG1-deficient (Ogg1(-/-)) mice have increased adiposity and hepatic steatosis following exposure to a high-fat diet (HFD), compared to wild-type (WT) animals. Ogg1(-/-) animals also have higher plasma insulin levels and impaired glucose tolerance upon HFD feeding, relative to WT counterparts. Analysis of energy expenditure revealed that HFD-fed Ogg1(-/-) mice have a higher resting VCO(2) and consequently, an increased respiratory quotient during the resting phase, indicating a preference for carbohydrate metabolism over fat oxidation in these mice. Additionally, microarray and quantitative PCR analyses revealed that key genes of fatty acid oxidation, including carnitine palmitoyl transferase-1, and the integral transcriptional co-activator Pgc-1α were significantly downregulated in Ogg1(-/-) livers. Multiple genes involved in TCA cycle metabolism were also significantly reduced in livers of Ogg1(-/-) mice. Furthermore, hepatic glycogen stores were diminished, and fasting plasma ketones were significantly reduced in Ogg1(-/-) mice. Collectively, these data indicate that OGG1 deficiency alters cellular substrate metabolism, favoring a fat sparing phenotype, that results in increased susceptibility to obesity and related pathologies in Ogg1(-/-) mice.


Asunto(s)
Adiposidad , ADN Glicosilasas/fisiología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Obesidad/etiología , Animales , ADN Mitocondrial/genética , Metabolismo Energético , Hígado Graso/metabolismo , Hígado Graso/patología , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Insulina/metabolismo , Lípidos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA