Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(6): 2625-2633, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38379919

RESUMEN

Anion engineering has proven to be an effective strategy to tailor the physical and chemical properties of metal oxides by modifying their existing crystal structures. In this work, a low-temperature synthesis for rare earth (RE)-doped Y2O2SO4 and Y2O2S was developed via annealing of Y(OH)3 intermediates in the presence of elemental sulfur in a sealed tube, followed by a controlled reduction step. The crystal structure patterns (X-ray diffraction) and optical spectra (UV-IR) of Y2O2SO4, Y2O2S, and crystalline Y2O3 were collected throughout the treatment steps to correlate the structural transformations (via thermogravimetric analysis) with the optical properties. Local and long-range crystallinities were characterized by using X-ray and optical spectroscopy approaches. Systematic shifts in the Eu3+ excitation and emission peaks were observed as a function of SO42- and S2- concentrations resulting from a crystal evolution from cubic (Y2O3) to trigonal (Y2O2S) and monoclinic (Y2O2SO4), which can modify the local hybridization of sensitizer dopants (i.e., Ce3+). Ultimately, Tb3+ and Tb3+/Ce3+ doping was employed in these hosts (Y2O2SO4, Y2O2S, and Y2O3) to understand energy transfer between sensitizer and activator ions, which showed significant enhancement for the monoclinic sulfate structure.

2.
Ind Eng Chem Res ; 62(22): 8635-8643, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37304911

RESUMEN

We demonstrate that for polyethylene depolymerization with induction heating (IH), using a bifunctional (Pt- or Pt-Sn-containing zeolite) hydrocracking catalyst, we can obtain high hydrocarbon product yields (up to 95 wt % in 2 h) at a relatively low surface temperature (375 °C) and with a tunable product distribution ranging from light gas products to gasoline- to diesel-range hydrocarbons. Four zeolite types [MFI, LTL, CHA(SSZ-13), and TON] were chosen as the supports due to their varying pore sizes and structures. These depolymerization results are obtained at atmospheric pressure and without the use of H2 and result in an alkane/alkene mixture with virtually no methane, aromatics, or coke formation. We also demonstrate how IH helps overcome diffusional resistances associated with conventional thermal heating and thereby shortens reaction times.

3.
ACS Appl Nano Mater ; 5(3): 3676-3685, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35372795

RESUMEN

Radio frequency (RF) induction heating was compared to conventional thermal heating for the hydrogenation of oleic acid to stearic acid. The RF reaction demonstrated decreased coke accumulation and increased product selectivity at comparable temperatures over mesoporous Fe3O4 catalysts composed of 28-32 nm diameter nanoparticles. The Fe3O4 supports were decorated with Pd and Pt active sites and served as the local heat generators when subjected to an alternating magnetic field. For hydrogenation over Pd/Fe3O4, both heating methods gave similar liquid product selectivities, but thermogravimetric analysis-differential scanning calorimetry measurements showed no coke accumulation for the RF-heated catalyst versus 6.5 wt % for the conventionally heated catalyst. A different trend emerged when hydrogenation over Pt/Fe3O4 was performed. Compared to conventional heating, the RF increased the selectivity to stearic acid by an additional 15%. Based on these results, RF heating acting upon a magnetically susceptible nanoparticle catalyst would also be expected to positively impact systems with high coking rates, for example, nonoxidative dehydrogenations.

4.
ChemSusChem ; 14(4): 1122-1130, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33338322

RESUMEN

Heat management in catalysis is limited by each material's heat transfer efficiencies, resulting in energy losses despite current thermal engineering strategies. In contrast, induction heating of magnetic nanoparticles (NPs) generates heat at the surface of the catalyst where the reaction occurs, reducing waste heat via dissipation. However, the synthesis of magnetic NPs with optimal heat generation requires interfacial ligands, such as oleic acid, which act as heat sinks. Surface treatments using tetramethylammonium hydroxide (TMAOH) or pyridine are used to remove these ligands before applications in hydrophilic media. In this study, Fe3 O4 NPs are surface treated to study the effect of induction heating on the catalytic oxidation of 1-octanol. Whereas TMAOH was unsuccessful in removing oleic acid, pyridine treatment resulted in a roughly 2.5-fold increase in heat generation and product yield. Therefore, efficient surfactant removal has profound implications in induction heating catalysis by increasing the heat transfer and available surface sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA