RESUMEN
Social insects have the highest rates of meiotic recombination among Metazoa, but there is considerable variation within the Hymenoptera. We synthesize the literature to investigate several hypotheses for these elevated recombination rates. We reexamine the long-standing Red Queen hypothesis, considering how social aspects of immunity could lead to increases in recombination. We examine the possibility of positive feedback between gene duplication and recombination rate in the context of caste specialization. We introduce a novel hypothesis that recombination rate may be driven up by direct selection on recombination activity in response to increases in lifespan. Finally, we find that the role of population size in recombination rate evolution remains opaque, despite the long-standing popularity of this hypothesis. Moreover, our review emphasizes how the varied life histories of social insect species provide an effective framework for advancing a broader understanding of adaptively driven variation in recombination rates.
RESUMEN
The physiology and behavior of social organisms correlate with their social environments. However, because social environments are typically confounded by age and physical environments (i.e., spatial location and associated abiotic factors), these correlations are usually difficult to interpret. For example, associations between an individual's social environment and its gene expression patterns may result from both factors being driven by age or behavior. Simultaneous measurement of pertinent variables and quantification of the correlations between these variables can indicate whether relationships are direct (and possibly causal) or indirect. Here, we combine demographic and automated behavioral tracking with a multiomic approach to dissect the correlation structure among the social and physical environment, age, behavior, brain gene expression, and microbiota composition in the carpenter ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated with the social environment. Moreover, seemingly strong correlations between brain gene expression and microbiota composition, physical environment, age, and behavior became weak when controlling for the social environment. Consistent with this, a machine learning analysis revealed that from brain gene expression data, an individual's social environment can be more accurately predicted than any other behavioral metric. These results indicate that social environment is a key regulator of behavior and physiology.
Asunto(s)
Hormigas , Microbiota , Animales , Hormigas/genética , Conducta Social , Microbiota/genética , Encéfalo , Expresión Génica/genética , Red SocialRESUMEN
Hybridization occupies a central role in many fundamental evolutionary processes, such as speciation or adaptation. Yet, despite its pivotal importance in evolution, little is known about the actual prevalence and distribution of current hybridization across the tree of life. Here we develop and implement a new statistical method enabling the detection of F1 hybrids from single-individual genome sequencing data. Using simulations and sequencing data from known hybrid systems, we first demonstrate the specificity of the method, and identify its statistical limits. Next, we showcase the method by applying it to available sequencing data from more than 1,500 species of Arthropods, including Hymenoptera, Hemiptera, Coleoptera, Diptera, and Archnida. Among these taxa, we find Hymenoptera, and especially ants, to display the highest number of candidate F1 hybrids, suggesting higher rates of recent hybridization between previously isolated gene pools in these groups. The prevalence of F1 hybrids was heterogeneously distributed across ants, with taxa including many candidates tending to harbor specific ecological and life-history traits. This work shows how large-scale genomic comparative studies of recent hybridization can be implemented, uncovering the determinants of first-generation hybridization across whole taxa.
Asunto(s)
Hormigas , Animales , Hormigas/genética , Pool de Genes , Genoma , Genómica , Hibridación GenéticaRESUMEN
Understanding why some species accumulate more deleterious substitutions than others is an important question relevant in evolutionary biology and conservation sciences. Previous studies conducted in terrestrial taxa suggest that life history traits correlate with the efficiency of purifying selection and accumulation of deleterious mutations. Using a large genome data set of 76 species of teleostean fishes, we show that species with life history traits associated with vulnerability to fishing have an increased rate of deleterious mutation accumulation (measured via dN/dS, i.e., nonsynonymous over synonymous substitution rate). Our results, focusing on a large clade of aquatic species, generalize previous patterns found so far in few clades of terrestrial vertebrates. These results also show that vulnerable species to fishing inherently accumulate more deleterious substitutions than nonthreatened ones, which illustrates the potential links among population genetics, ecology, and fishing policies to prevent species extinction.
Asunto(s)
Explotaciones Pesqueras , Peces/genética , Rasgos de la Historia de Vida , Acumulación de Mutaciones , Animales , GenomaRESUMEN
Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of ATâGC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne.
Asunto(s)
Codón , Conversión Génica , Insectos/genética , Selección Genética , Mutación Silenciosa , Animales , Composición de Base , Densidad de PoblaciónRESUMEN
Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids-the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation.
Asunto(s)
Variación Genética , Animales , Genética de Población , Hibridación Genética , Modelos BiológicosRESUMEN
BACKGROUND: The ants of the Formica genus are classical model species in evolutionary biology. In particular, Darwin used Formica as model species to better understand the evolution of slave-making, a parasitic behaviour where workers of another species are stolen to exploit their workforce. In his book "On the Origin of Species" (1859), Darwin first hypothesized that slave-making behaviour in Formica evolved in incremental steps from a free-living ancestor. METHODS: The absence of a well-resolved phylogenetic tree of the genus prevent an assessment of whether relationships among Formica subgenera are compatible with this scenario. In this study, we resolve the relationships among the 4 palearctic Formica subgenera (Formica str. s., Coptoformica, Raptiformica and Serviformica) using a phylogenomic dataset of 945 genes for 16 species. RESULTS: We provide a reference tree resolving the relationships among the main Formica subgenera with high bootstrap supports. DISCUSSION: The branching order of our tree suggests that the free-living lifestyle is ancestral in the Formica genus and that parasitic colony founding could have evolved a single time, probably acting as a pre-adaptation to slave-making behaviour. CONCLUSION: This phylogenetic tree provides a solid backbone for future evolutionary studies in the Formica genus and slave-making behaviour.
Asunto(s)
Hormigas/clasificación , Hormigas/genética , Conducta Animal , Parásitos/clasificación , Parásitos/genética , Filogenia , Conducta Social , Animales , Regiones Árticas , Especificidad de la Especie , SimbiosisRESUMEN
As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.
Asunto(s)
Composición de Base , Abejas/clasificación , Abejas/genética , Evolución Molecular , Genoma de los Insectos , Genómica , Filogenia , Animales , Genes de Insecto , Heterogeneidad Genética , Modelos GenéticosRESUMEN
Historical trajectories of tree species during the late Quaternary have been well reconstructed through genetic and palaeobotanical studies. However, many congeneric tree species are interfertile, and the timing and contribution of introgression to species divergence during their evolutionary history remains largely unknown. We quantified past and current gene flow events between four morphologically divergent oak species (Quercus petraea, Q. robur, Q. pyrenaica, Q. pubescens), by two independent inference methods: diffusion approximation to the joint frequency spectrum (∂a∂i) and approximate Bayesian computation (ABC). For each pair of species, alternative scenarios of speciation allowing gene flow over different timescales were evaluated. Analyses of 3524 single nucleotide polymorphisms (SNPs) randomly distributed in the genome, showed that these species evolved in complete isolation for most of their history, but recently came into secondary contact, probably facilitated by the most recent period of postglacial warming. We demonstrated that: there was sufficient genetic differentiation before secondary contact for the accumulation of barriers to gene flow; and current European white oak genomes are a mosaic of genes that have crossed species boundaries and genes impermeable to gene flow.
Asunto(s)
Especiación Genética , Quercus/genética , Teorema de Bayes , Europa (Continente) , Variación Genética , Funciones de Verosimilitud , Filogenia , Análisis de Componente Principal , Especificidad de la EspecieRESUMEN
Phenotypic plasticity, where a single genome can give rise to different phenotypes, underlies many remarkable features of the natural world and occurs in a wide range of organisms. Understanding the transcriptional differences that underlie plastic phenotypes remains a major unsolved problem in biology. In many ants, females can develop into either queens or workers, two phenotypes with different morphology, behaviour and longevity. In comparison with workers, queens are larger, more fecund and longer lived. Here, we study gene expression differences between queens and workers in the ant Lasius niger. The analysis of age- and tissue-specific RNA sequencing showed that patterns of caste-biased gene expression vary considerably between ages and tissues. Expression was more tightly linked to age than caste despite the important morphological and behavioural differences between queens and workers. Our data allowed us to identify genes that are consistently biased across biological contexts. Caste-biased genes showed faster rates of molecular evolution, lower levels of DNA methylation and greater variability in expression than unbiased genes. Our results indicate that a substantial proportion of caste-biased expression is ephemeral and that taking account of age and tissue is critical to understanding the transcriptomic basis of plastic phenotypes. By contrast, the biological context of expression bias did not broadly affect methylation or the rate of evolution. The faster rate of evolution and greater variability of expression of caste-biased genes indicate that caste-biased genes evolve from loosely regulated genes that can be co-opted for caste-specific tasks because of the lax control over their expression.
Asunto(s)
Factores de Edad , Hormigas/genética , Evolución Molecular , Jerarquia Social , Animales , Conducta Animal , Análisis por Conglomerados , Islas de CpG , Metilación de ADN , Femenino , Expresión Génica , Genes de Insecto , TranscriptomaRESUMEN
Sexual reproduction generally requires no more than two partners. Here, we show convergent evolution of social hybridogenesis, a reproductive system requiring three reproductive partners in harvester ants. In this unorthodox reproductive system, two distinct genetic lineages live in sympatry and queens have to mate with males of their own lineage to produce queens along with males of the alternative lineage to produce workers. Using a large transcriptomic data set of nine species, we show that social hybridogenesis evolved at least three times independently in the genus Messor. Moreover, a study of 13 populations of Messor barbarus revealed that this mode of reproduction is fixed in the whole range of this ecologically dominant species. Finally, we show that workers can produce males carrying genes of the two genetic lineages, raising the possibility of rare gene flow between lineages contributing to the long-term maintenance of pairs of interdependent lineages. These results emphasize the evolutionary importance of social hybridogenesis, a major transition possibly linked to the peculiar ecology of harvester ants.
Asunto(s)
Hormigas/genética , Conducta Animal , Evolución Molecular , Genética de Población , Conducta Social , Animales , Femenino , Flujo Génico , Hibridación Genética , Masculino , Reproducción , Simpatría , TranscriptomaRESUMEN
BACKGROUND: The metabolic theory of ecology stipulates that molecular evolutionary rates should correlate with temperature and latitude in ectothermic organisms. Previous studies have shown that most groups of vertebrates, such as amphibians, turtles and even endothermic mammals, have higher molecular evolutionary rates in regions where temperature is high. However, the association between molecular evolutionary rates and temperature or latitude has never been tested in Squamata. RESULTS: We used a large dataset including the spatial distributions and environmental variables for 1,651 species of Squamata and compared the contrast of the rates of molecular evolution with the contrast of temperature and latitude between sister species. Using major axis regressions and a new algorithm to choose independent sister species pairs, we found that temperature and absolute latitude were not associated with molecular evolutionary rates. CONCLUSIONS: This absence of association in such a diverse ectothermic group questions the mechanisms explaining current pattern of species diversity in Squamata and challenges the presupposed universality of the metabolic theory of ecology.
Asunto(s)
Ecología , Evolución Molecular , Geografía , Lagartos/metabolismo , Lagartos/fisiología , Modelos Teóricos , Temperatura , Animales , Filogenia , Especificidad de la EspecieRESUMEN
Comparative genomic studies extensively rely on alignments of orthologous sequences. Yet, selecting, gathering, and aligning orthologous exons and protein-coding sequences (CDS) that are relevant for a given evolutionary analysis can be a difficult and time-consuming task. In this context, we developed OrthoMaM, a database of ORTHOlogous MAmmalian Markers describing the evolutionary dynamics of orthologous genes in mammalian genomes using a phylogenetic framework. Since its first release in 2007, OrthoMaM has regularly evolved, not only to include newly available genomes but also to incorporate up-to-date software in its analytic pipeline. This eighth release integrates the 40 complete mammalian genomes available in Ensembl v73 and provides alignments, phylogenies, evolutionary descriptor information, and functional annotations for 13,404 single-copy orthologous CDS and 6,953 long exons. The graphical interface allows to easily explore OrthoMaM to identify markers with specific characteristics (e.g., taxa availability, alignment size, %G+C, evolutionary rate, chromosome location). It hence provides an efficient solution to sample preprocessed markers adapted to user-specific needs. OrthoMaM has proven to be a valuable resource for researchers interested in mammalian phylogenomics, evolutionary genomics, and has served as a source of benchmark empirical data sets in several methodological studies. OrthoMaM is available for browsing, query and complete or filtered downloads at http://www.orthomam.univ-montp2.fr/.
Asunto(s)
Bases de Datos Genéticas , Mamíferos/clasificación , Mamíferos/genética , Animales , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Exones , Genómica , Humanos , Filogenia , Alineación de Secuencia , Programas Informáticos , Navegador WebRESUMEN
Despite the rapid increase of size in phylogenomic data sets, a number of important nodes on animal phylogeny are still unresolved. Among these, the rooting of the placental mammal tree is still a controversial issue. One difficulty lies in the pervasive phylogenetic conflicts among genes, with each one telling its own story, which may be reliable or not. Here, we identified a simple criterion, that is, the GC content, which substantially helps in determining which gene trees best reflect the species tree. We assessed the ability of 13,111 coding sequence alignments to correctly reconstruct the placental phylogeny. We found that GC-rich genes induced a higher amount of conflict among gene trees and performed worse than AT-rich genes in retrieving well-supported, consensual nodes on the placental tree. We interpret this GC effect mainly as a consequence of genome-wide variations in recombination rate. Indeed, recombination is known to drive GC-content evolution through GC-biased gene conversion and might be problematic for phylogenetic reconstruction, for instance, in an incomplete lineage sorting context. When we focused on the AT-richest fraction of the data set, the resolution level of the placental phylogeny was greatly increased, and a strong support was obtained in favor of an Afrotheria rooting, that is, Afrotheria as the sister group of all other placentals. We show that in mammals most conflicts among gene trees, which have so far hampered the resolution of the placental tree, are concentrated in the GC-rich regions of the genome. We argue that the GC content-because it is a reliable indicator of the long-term recombination rate-is an informative criterion that could help in identifying the most reliable molecular markers for species tree inference.
Asunto(s)
Secuencia Rica en At , Composición de Base , Evolución Molecular , Genoma , Mamíferos/clasificación , Filogenia , Animales , Femenino , Mamíferos/genética , Datos de Secuencia Molecular , Placenta/fisiología , Embarazo , Recombinación Genética , Alineación de Secuencia , Homología de Secuencia de Ácido NucleicoRESUMEN
Contagious diseases are a major threat to societies in which individuals live in close contact. Social insects have evolved collective defense behaviors, such as social care or isolation of infected workers, that prevent outbreaks of pathogens. It has thus been suggested that individual immunity is reduced in species with such 'social immunity'. However, this hypothesis has not been tested functionally. Here, we characterize the immune response of the ant Lasius niger using a combination of genomic analysis, experimental infections, gene expression quantification, behavioural observations and pathogen quantifications. We uncover a striking specialization of immune responses towards different pathogens. Systemic individual immunity is effective against opportunistic bacterial infections, which are not covered by social immunity, but is not elicited upon fungal infections, which are effectively controlled by social immunity. This specialization suggests that immune layers have evolved complementary functions predicted to ensure the most cost-effective response against a wide range of pathogens.
Asunto(s)
Hormigas , Conducta Social , Hormigas/inmunología , Hormigas/microbiología , Hormigas/fisiología , Animales , Conducta Animal , Interacciones Huésped-Patógeno/inmunologíaRESUMEN
Gynodioecy, the coexistence of hermaphrodites with females, often reflects conflicts between cytoplasmic male sterility (CMS) genes and nuclear genes restoring male fertility. CMS is frequent in plants and has been recently discovered in one animal: the freshwater snail, Physa acuta. In this system, CMS was linked to a single divergent mitochondrial genome (D), devoid of apparent nuclear restoration. Our study uncovers a second, novel CMS-associated mitogenome (K) in Physa acuta, demonstrating an extraordinary acceleration of molecular evolution throughout the entire K mitochondrial genome, akin to the previously observed pattern in D. This suggests a pervasive occurrence of accelerated evolution in both CMS-associated lineages. Through a 17-generation introgression experiment, we further show that nuclear polymorphisms in K-mitogenome individuals contribute to the restoration of male function in natural populations. Our results underscore shared characteristics in gynodioecy between plants and animals, emphasizing the presence of multiple CMS mitotypes and cytonuclear conflicts. This reaffirms the pivotal role of mitochondria in influencing male function and in generating genomic conflicts that impact reproductive processes in animals.
Asunto(s)
Genoma Mitocondrial , Polimorfismo Genético , Caracoles , Animales , Masculino , Caracoles/genética , Caracoles/fisiología , Núcleo Celular/genética , Fertilidad/genética , Organismos Hermafroditas/genética , Evolución Molecular , Femenino , Citoplasma/genética , Infertilidad Masculina/genéticaRESUMEN
The analysis of extant sequences shows that molecular evolution has been heterogeneous through time and among lineages. However, for a given sequence alignment, it is often difficult to uncover what factors caused this heterogeneity. In fact, identifying and characterizing heterogeneous patterns of molecular evolution along a phylogenetic tree is very challenging, for lack of appropriate methods. Users either have to a priori define groups of branches along which they believe molecular evolution has been similar or have to allow each branch to have its own pattern of molecular evolution. The first approach assumes prior knowledge that is seldom available, and the second requires estimating an unreasonably large number of parameters. Here we propose a convenient and reliable approach where branches get clustered by their pattern of molecular evolution alone, with no need for prior knowledge about the data set under study. Model selection is achieved in a statistical framework and therefore avoids overparameterization. We rely on substitution mapping for efficiency and present two clustering approaches, depending on whether or not we expect neighbouring branches to share more similar patterns of sequence evolution than distant branches. We validate our method on simulations and test it on four previously published data sets. We find that our method correctly groups branches sharing similar equilibrium GC contents in a data set of ribosomal RNAs and recovers expected footprints of selection through dN/dS. Importantly, it also uncovers a new pattern of relaxed selection in a phylogeny of Mantellid frogs, which we are able to correlate to life-history traits. This shows that our programs should be very useful to study patterns of molecular evolution and reveal new correlations between sequence and species evolution. Our programs can run on DNA, RNA, codon, or amino acid sequences with a large set of possible models of substitutions and are available at http://biopp.univ-montp2.fr/forge/testnh.
Asunto(s)
Algoritmos , Evolución Molecular , Modelos Genéticos , Animales , Evolución Biológica , Análisis por Conglomerados , Simulación por Computador , Daphnia/genética , Muramidasa/genética , Filogenia , ARN Ribosómico/genética , Ranidae/genéticaRESUMEN
The origin, evolution, and functional relevance of genomic variations in GC content are a long-debated topic, especially in mammals. Most of the existing literature, however, has focused on a small number of model species and/or limited sequence data sets. We analyzed more than 1000 orthologous genes in 33 fully sequenced mammalian genomes, reconstructed their ancestral isochore organization in the maximum likelihood framework, and explored the evolution of third-codon position GC content in representatives of 16 orders and 27 families. We showed that the previously reported erosion of GC-rich isochores is not a general trend. Several species (e.g., shrew, microbat, tenrec, rabbit) have independently undergone a marked increase in GC content, with a widening gap between the GC-poorest and GC-richest classes of genes. The intensively studied apes and (especially) murids do not reflect the general placental pattern. We correlated GC-content evolution with species life-history traits and cytology. Significant effects of body mass and genome size were detected, with each being consistent with the GC-biased gene conversion model.
Asunto(s)
Composición de Base/genética , Cromosomas de los Mamíferos/genética , Evolución Molecular , Genoma , Isocoras/genética , Filogenia , Animales , Secuencia de Bases , Genómica , Alineación de SecuenciaRESUMEN
The evolution of eusociality has allowed ants to become one of the most conspicuous and ecologically dominant groups of organisms in the world. A large majority of the current â¼14,000 ant species belong to the formicoids,1 a clade of nine subfamilies that exhibit the most extreme forms of reproductive division of labor, large colony size,2 worker polymorphism,3 and extended queen longevity.4 The eight remaining non-formicoid subfamilies are less well studied, with few genomes having been sequenced so far and unclear phylogenetic relationships.5 By sequencing 65 genomes, we provide a robust phylogeny of the 17 ant subfamilies, retrieving high support to the controversial leptanillomorph clade (Leptanillinae and Martialinae) as the sister group to all other extant ants. Moreover, our genomic analyses revealed that the emergence of the formicoids was accompanied by an elevated number of positive selection events. Importantly, the top three gene functions under selection are linked to key features of complex eusociality, with histone acetylation being implicated in caste differentiation, gene silencing by RNA in worker sterility, and autophagy in longevity. These results show that the key pathways associated with eusociality have been under strong selection during the Cretaceous, suggesting that the molecular foundations of complex eusociality may have evolved rapidly in less than 20 Ma.
Asunto(s)
Hormigas , Animales , Hormigas/genética , Filogenia , Reproducción/genética , Selección Genética , Conducta SocialRESUMEN
A eusocial colony typically consists of two main castes: queens that reproduce and sterile workers that help them. This division of labor, however, is vulnerable to genetic elements that favor the development of their carriers into queens. Several factors, such as intracolonial relatedness, can modulate the spread of such caste-biasing genotypes. Here we investigate the effects of a notable yet understudied ecological setting: where larvae produced by hybridization develop into sterile workers. Using mathematical modeling, we show that the coevolution of hybridization with caste determination readily triggers an evolutionary arms race between nonhybrid larvae that increasingly develop into queens, and queens that increasingly hybridize to produce workers. Even where hybridization reduces worker function and colony fitness, this race can lead to the loss of developmental plasticity and to genetically hard-wired caste determination. Overall, our results may help understand the repeated evolution toward remarkable reproductive systems (e.g., social hybridogenesis) observed in several ant species.