Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415838

RESUMEN

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genética
2.
BMC Biol ; 22(1): 128, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816863

RESUMEN

BACKGROUND: In yeasts belonging to the subphylum Saccharomycotina, genes encoding components of the main metabolic pathways, like alcoholic fermentation, are usually conserved. However, in fructophilic species belonging to the floral Wickerhamiella and Starmerella genera (W/S clade), alcoholic fermentation was uniquely shaped by events of gene loss and horizontal gene transfer (HGT). RESULTS: Because HGT and gene losses were first identified when only eight W/S-clade genomes were available, we collected publicly available genome data and sequenced the genomes of 36 additional species. A total of 63 genomes, representing most of the species described in the clade, were included in the analyses. Firstly, we inferred the phylogenomic tree of the clade and inspected the genomes for the presence of HGT-derived genes involved in fructophily and alcoholic fermentation. We predicted nine independent HGT events and several instances of secondary loss pertaining to both pathways. To investigate the possible links between gene loss and acquisition events and evolution of sugar metabolism, we conducted phenotypic characterization of 42 W/S-clade species including estimates of sugar consumption rates and fermentation byproduct formation. In some instances, the reconciliation of genotypes and phenotypes yielded unexpected results, such as the discovery of fructophily in the absence of the cornerstone gene (FFZ1) and robust alcoholic fermentation in the absence of the respective canonical pathway. CONCLUSIONS: These observations suggest that reinstatement of alcoholic fermentation in the W/S clade triggered a surge of innovation that goes beyond the utilization of xenologous enzymes, with fructose metabolism playing a key role.


Asunto(s)
Transferencia de Gen Horizontal , Filogenia , Metabolismo de los Hidratos de Carbono/genética , Azúcares/metabolismo , Evolución Molecular , Genoma Fúngico
3.
Yeast ; 41(1-2): 52-63, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38146767

RESUMEN

In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T . The Mycobank number is MB 849680.


Asunto(s)
Saccharomycetales , Vino , Fermentación , Filogenia , Saccharomycetales/genética , Pichia/genética , Secuencia de Bases , Análisis de Secuencia de ADN , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética
4.
Yeast ; 41(7): 437-447, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850070

RESUMEN

Four yeast isolates were obtained from rotting wood and galleries of passalid beetles collected in different sites of the Brazilian Amazonian Rainforest in Brazil. This yeast produces unconjugated allantoid asci each with a single elongated ascospore with curved ends. Sequence analysis of the internal transcribed spacer-5.8 S region and the D1/D2 domains of the large subunit ribosomal RNA (rRNA) gene showed that the isolates represent a novel species of the genus Spathaspora. The novel species is phylogenetically related to a subclade containing Spathaspora arborariae and Spathaspora suhii. Phylogenomic analysis based on 1884 single-copy orthologs for a set of Spathaspora species whose whole genome sequences are available confirmed that the novel species represented by strain UFMG-CM-Y285 is phylogenetically close to Sp. arborariae. The name Spathaspora marinasilvae sp. nov. is proposed to accommodate the novel species. The holotype of Sp. marinasilvae is CBS 13467 T (MycoBank 852799). The novel species was able to accumulate xylitol and produce ethanol from d-xylose, a trait of biotechnological interest common to several species of the genus Spathaspora.


Asunto(s)
Escarabajos , Filogenia , Bosque Lluvioso , Saccharomycetales , Madera , Xilosa , Animales , Madera/microbiología , Escarabajos/microbiología , Brasil , Saccharomycetales/genética , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , Saccharomycetales/metabolismo , Xilosa/metabolismo , Fermentación , ADN de Hongos/genética , Análisis de Secuencia de ADN
5.
Artículo en Inglés | MEDLINE | ID: mdl-38359077

RESUMEN

Three yeast isolate candidates for a novel species were obtained from rotting wood samples collected in Brazil and Colombia. The Brazilian isolate differs from the Colombian isolates by one nucleotide substitution in each of the D1/D2 and small subunit (SSU) sequences. The internal transcribed spacer (ITS) and translation elongation factor 1-α gene sequences of the three isolates were identical. A phylogenetic analysis showed that this novel species belongs to the genus Ogataea. This novel species is phylogenetically related to Candida nanaspora and Candida nitratophila. The novel species differs from C. nanaspora by seven nucleotides and two indels, and by 17 nucleotides and four indels from C. nitratophila in the D1/D2 sequences. The ITS sequences of these three species differ by more than 30 nucleotides. Analyses of the sequences of the SSU and translation elongation factor 1-α gene also showed that these isolates represent a novel species of the genus Ogataea. Different from most Ogataea species, these isolates did not assimilate methanol as the sole carbon source. The name Ogataea nonmethanolica sp. nov. is proposed to accommodate these isolates. The holotype of Ogataea nonmethanolica is CBS 13485T. The MycoBank number is MB 851195.


Asunto(s)
Factor 1 de Elongación Peptídica , Saccharomycetales , Factor 1 de Elongación Peptídica/genética , Brasil , Filogenia , Colombia , ADN Espaciador Ribosómico/genética , Madera , ARN Ribosómico 16S/genética , ADN de Hongos/genética , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Saccharomycetales/genética , Nucleótidos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38407127

RESUMEN

Four yeast isolates collected from flowers from different ecosystems in Brazil, one from fruit of Nothofagus alpina in Argentina, three from flowers of Neltuma chilensis in Chile and one obtained from the proventriculus of a female bumblebee in Canada were demonstred, by analysis of the sequences of the internal transcribed spacer (ITS) region and D1/D2 domains of the large subunit rRNA gene, to represent two novel species of the genus Starmerella. These species are described here as Starmerella gilliamiae f.a, sp. nov. (CBS 16166T; Mycobank MB 851206) and Starmerella monicapupoae f.a., sp. nov. (PYCC 8997T; Mycobank MB 851207). The results of a phylogenomic analysis using 1037 single-copy orthogroups indicated that S. gilliamiae is a member of a subclade that contains Starmerella opuntiae, Starmerella aceti and Starmerella apicola. The results also indicated that S. monicapupoae is phylogenetically related to Starmerella riodocensis. The two isolates of S. monicapupoae were obtained from flowers in Brazil and were probably vectored by insects that visit these substrates. Starmerella gilliamiae has a wide geographical distribution having been isolated in flowers from Brazil and Chile, fruit from Argentina and a bumblebee from Canada.


Asunto(s)
Ecosistema , Saccharomycetales , Animales , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Saccharomycetales/genética , Insectos
7.
Yeast ; 40(2): 84-101, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36582015

RESUMEN

This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d-xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.


Asunto(s)
Saccharum , Madera , Celulosa , Bosque Lluvioso , Brasil , Filogenia , Levaduras
8.
Yeast ; 40(11): 511-539, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37921426

RESUMEN

Tropical rainforests and related biomes are found in Asia, Australia, Africa, Central and South America, Mexico, and many Pacific Islands. These biomes encompass less than 20% of Earth's terrestrial area, may contain about 50% of the planet's biodiversity, and are endangered regions vulnerable to deforestation. Tropical rainforests have a great diversity of substrates that can be colonized by yeasts. These unicellular fungi contribute to the recycling of organic matter, may serve as a food source for other organisms, or have ecological interactions that benefit or harm plants, animals, and other fungi. In this review, we summarize the most important studies of yeast biodiversity carried out in these biomes, as well as new data, and discuss the ecology of yeast genera frequently isolated from tropical forests and the potential of these microorganisms as a source of bioinnovation. We show that tropical forest biomes represent a tremendous source of new yeast species. Although many studies, most using culture-dependent methods, have already been carried out in Central America, South America, and Asia, the tropical forest biomes of Africa and Australasia remain an underexplored source of novel yeasts. We hope that this review will encourage new researchers to study yeasts in unexplored tropical forest habitats.


Asunto(s)
Bosques , Clima Tropical , Animales , Biodiversidad , Ecosistema , Plantas
9.
Yeast ; 40(11): 540-549, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37818980

RESUMEN

Five yeast strains isolated from tree bark and rotten wood collected in central and southwestern China, together with four Brazilian strains (three from soil and rotting wood collected in an Amazonian rainforest biome and one from Bromeliad collected in Alagoas state) and one Costa Rican strain isolated from a flower beetle, represent a new species closely related with Yueomyces sinensis in Saccharomycetaceae, as revealed by the 26S ribosomal RNA gene D1/D2 domain and the internal transcribed spacer region sequence analysis. The name Yueomyces silvicola sp. nov. is proposed for this new species with the holotype China General Microbiological Culture Collection Center 2.6469 (= Japan Collection of Microorganisms 34885). The new species exhibits a whole-genome average nucleotide identity value of 77.8% with Y. sinensis. The two Yueomyces species shared unique physiological characteristics of being unable to utilize ammonium and the majority of the amino acids, including glutamate and glutamine, as sole nitrogen sources. Among the 20 amino acids tested, only leucine and tyrosine can be utilized by the Yueomyces species. Genome sequence comparison showed that GAT1, which encodes a GATA family protein participating in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae, is absent in the Yueomyces species. However, the failure of the Yueomyces species to utilize ammonium, glutamate, and glutamine, which are generally preferred nitrogen sources for microorganisms, implies that more complicated alterations in the central nitrogen metabolism pathway might occur in the genus Yueomyces.


Asunto(s)
Compuestos de Amonio , Saccharomycetales , Saccharomyces cerevisiae/genética , Glutamina/genética , Ácido Glutámico/genética , Filogenia , ADN Espaciador Ribosómico/genética , Análisis de Secuencia de ADN , Saccharomycetales/genética , Aminoácidos/genética , ADN de Hongos/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-37725086

RESUMEN

Ten yeast isolates representing four candidate novel species of the genus Teunomyces were obtained from different species of mushrooms and drosophilids collected in an Amazonian Forest biome in Brazil. Sequence analyses of the ITS 5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that four isolates were phylogenetically related to Teunomyces stri, two isolates related to Teunomyces atbi, two isolates related to Teunomyces aglyptinius, and another two isolates related to Teunomyces aglyptinius, Teunomyces barrocoloradensis, Teunomyces gatunensis and Teunomyces stri. The four novel species differ by 3 % or more of sequence divergence in D1/D2 domains from their closest relatives. These species were isolated from basidiocarps of the mushrooms Marasmiellus volvatus, Tricholomopsis aurea, Hydropus sp. and Favolus tenuiculus, or drosophilids feeding on these substrates. The names Teunomyces gombertii f.a., sp. nov. (holotype CBS 16168T; Mycobank MB849065), Teunomyces landelliae f.a., sp. nov. (holotype =CBS 16169T; Mycobank MB 849066), Teunomyces ledahaglerae f.a., sp. nov. (holotype CBS 16170T; Mycobank MB 849067) and Teunomyces paulamoraisiae f.a., sp. nov. (holotype CBS 16120T; Mycobank MB 849068) are proposed for these species.


Asunto(s)
Agaricales , Bosque Lluvioso , Brasil , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Ecosistema
11.
Artículo en Inglés | MEDLINE | ID: mdl-37074151

RESUMEN

Sixteen yeast isolates representing two novel species of the genus Sugiyamaella were obtained from passalid beetles, their galleries and rotting wood collected in three sites of Amazonian Forest in Brazil. Sequence analyses of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the first species, described here as Sugiyamaella amazoniana f. a., sp. nov. (holotype CBS 18112, MycoBank 847461) is phylogenetically related to S. bonitensis with these species differing by 37 nucleotide substitutions and six gaps in D1/D2 sequences. S. amazoniana is represented by nine isolates obtained from the guts of the passalid beetles Popilius marginatus, Veturius magdalenae, Veturius sinuosus and Spasalus aquinoi, a beetle gallery and rotting wood. The second species, Sugiyamaella bielyi f. a., sp. nov. (holotype CBS 18148, MycoBank 847463), is most phylogenetically related to several undescribed Sugiyamaella species. S. bielyi is described based on seven isolates obtained from the guts of V. magdalenae and V. sinuosus, a beetle gallery and rotting wood. Both species appear to be associated with passalid beetles and their ecological niches in Amazonian biome.


Asunto(s)
Escarabajos , Saccharomycetales , Animales , Madera , Brasil , Filogenia , Análisis de Secuencia de ADN , ADN de Hongos/genética , Técnicas de Tipificación Micológica , Composición de Base , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , ADN Espaciador Ribosómico/genética
12.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37905527

RESUMEN

Three yeast isolates were obtained from soil and rotting wood samples collected in an Amazonian rainforest biome in Brazil. Comparison of the intergenic spacer 5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of the genus Saccharomycopsis. A tree inferred from the D1/D2 sequences placed the novel species near a subclade containing Saccharomycopsis lassenensis, Saccharomycopsis fermentans, Saccharomycopsis javanensis, Saccharomycopsis babjevae, Saccharomycopsis schoenii and Saccharomycopsis oosterbeekiorum, but with low bootstrap support. In terms of sequence divergence, the novel species had the highest identity in the D1/D2 domains with Saccharomycopsis capsularis, from which it differed by 36 substitutions. In contrast, a phylogenomic analysis based on 1061 single-copy orthologs for a smaller set of Saccharomycopsis species whose whole genome sequences are available indicated that the novel species represented by strain UFMG-CM-Y6991 is phylogenetically closer to Saccharomycopsis fodiens and Saccharomycopsis sp. TF2021a (=Saccharomycopsis phalluae). The novel yeast is homothallic and produces asci with one spheroidal ascospore with an equatorial or subequatorial ledge. The name Saccharomycopsis praedatoria sp. nov. is proposed to accommodate the novel species. The holotype of Saccharomycopsis praedatoria is CBS 16589T. The MycoBank number is MB849369. S. praedatoria was able to kill cells of Saccharomyces cerevisiae by means of penetration with infection pegs, a trait common to most species of Saccharomycopsis.


Asunto(s)
Saccharomycetales , Saccharomycopsis , Madera , Bosque Lluvioso , Saccharomyces cerevisiae/genética , Suelo , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , ADN Espaciador Ribosómico/genética , ADN de Hongos/genética , Técnicas de Tipificación Micológica
13.
Artículo en Inglés | MEDLINE | ID: mdl-36884373

RESUMEN

Four isolates of Spathaspora species were recovered from rotting wood collected in two Brazilian Amazonian biomes. The isolates produced unconjugated allantoid asci with a single elongated ascospore with curved ends. Sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent two different novel Spathaspora species, phylogenetically related to Sp. boniae. Two isolates were obtained from rotting wood collected in two different sites of the Amazonian forest in the state of Pará. The name Spathaspora brunopereirae sp. nov. is proposed to accommodate these isolates. The holotype of Spathaspora brunopereirae sp. nov. is CBS 16119T (MycoBank MB846672). The other two isolates were obtained from a region of transition between the Amazonian forest and the Cerrado ecosystem in the state of Tocantins. The name Spathaspora domphillipsii sp. nov. is proposed for this novel species. The holotype of Spathaspora domphillipsii sp. nov. is CBS 14229T (MycoBank MB846697). Both species are able to convert d-xylose into ethanol and xylitol, a trait with biotechnological applications.


Asunto(s)
Saccharomycetales , Xilosa , Ecosistema , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Saccharomycetales/genética , Levaduras/genética , Bosques , Madera , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética
14.
Biotechnol Lett ; 45(2): 263-272, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586052

RESUMEN

The yeast Cyberlindnera xylosilytica UFMG-CM-Y309 has been identified as a promising new xylitol producer from sugarcane bagasse hemicellulosic hydrolysate (SCHH). However, SCHH pretreatment process generates byproducts, which are toxic to cell metabolism, including furans, phenolic compounds, and carboxylic acids, such as acetic acid, typically released at high concentrations. This research aims to reduce acetic acid in sugarcane hemicellulose hydrolysate concomitantly with xylitol production by yeast strain Cy. xylosilytica UFMG-CM-Y309 in a bioreactor by strategically evaluating the influence of volumetric oxygen transfer coefficient (kLa) (21 and 35 h-1). Experiments were conducted on a bench bioreactor (2 L volumetric capacity) at different initial kLa values (21 and 35 h-1). SCHH medium was supplemented with rice bran extract (10 g L-1) and yeast extract (1 g L-1). Cy. xylosilytica showed high xylitol production performance (19.56 g L-1), xylitol yield (0.56 g g-1) and, maximum xylitol-specific production rate (µpmáx 0.20 gxylitol·g-1 h-1) at kLa value of 21 h-1, concomitantly slowing the rate of acetic acid consumption. A faster acetic acid consumption (100%) by Cy. xylosilytica was observed at kLa of 35 h-1, concomitantly with an increase in maximum cellular growth (14.60 g L-1) and reduction in maximum xylitol production (14.56 g L-1 and Yp/s 0.34 g g-1). This study contributes to pioneering research regarding this yeast performance in bioreactors, emphasizing culture medium detoxification and xylitol production.


Asunto(s)
Celulosa , Saccharum , Celulosa/metabolismo , Xilitol , Ácido Acético/metabolismo , Hidrólisis , Reactores Biológicos , Levaduras/metabolismo , Fermentación
15.
Artículo en Inglés | MEDLINE | ID: mdl-35225759

RESUMEN

Eight yeast isolates with an affinity to the genus Tremella were obtained from bromeliads from different locations in Brazil. Although the formation of basidia and basidiocarp were not observed, on the basis of the results of sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) region, we suggest that these isolates represent two novel species of the genus Tremella. These yeasts are phylogenetically related to Tremella saccharicola and Tremella globispora. Therefore, we propose Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. as novel yeast species of the order Tremellales (Agaricomycotina, Basidiomycota). Sequence analysis revealed that Tremella ananatis sp. nov. differs by 11 and 28 nucleotide substitutions from Tremella saccharicola in the D1/D2 sequence and ITS region, respectively. Moreover, Tremella lamprococci sp. nov. differs by 15 and 29 nucleotide substitutions from Tremella globispora in the D1/D2 sequence and ITS region, respectively. The holotypes of Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. are CBS 14568T and CBS 14567T, and the MycoBank numbers are MB840480 and MB840481, respectively.


Asunto(s)
Basidiomycota , Bromeliaceae/microbiología , Filogenia , Composición de Base , Basidiomycota/clasificación , Basidiomycota/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN
16.
Fungal Genet Biol ; 157: 103624, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536506

RESUMEN

The yeast Spathaspora passalidarum is able to produce ethanol from D-xylose and D-glucose. However, it is not clear how xylose metabolism is affected by D-glucose when both sugars are available in the culture medium. The aims of this work were to evaluate the influence of D-glucose on D-xylose consumption, ethanol production, gene expression, and the activity of key xylose-metabolism enzymes under both aerobic and oxygen-limited conditions. Ethanol yields and productivities were increased in culture media containing D-xylose as the sole carbon source or a mixture of D-xylose and D-glucose. S. passalidarum preferentially consumed D-glucose in the co-fermentations, which is consistent with the reduction in expression of genes encoding the key xylose-metabolism enzymes. In the presence of D-glucose, the specific activities of xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) were lower. Interestingly, in accordance with other studies, the presence of 2-deoxyglucose (2DG) did not inhibit the growth of S. passalidarum in culture medium containing D-xylose as the sole carbon source. This indicates that a non-canonical repression pathway is acting in S. passalidarum. In conclusion, the results suggest that D-glucose inhibits D-xylose consumption and prevents the D-xylose-mediated induction of the genes encoding XR, XDH, and XK.


Asunto(s)
Saccharomycetales , Xilosa , Glucosa , Saccharomyces cerevisiae
17.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34726589

RESUMEN

During studies of yeasts associated with soil in a Cerrado-Atlantic Rain Forest ecotone site in Brazil, three orange-pigmented yeast strains were isolated from samples collected in Minas Gerais state, Brazil. Molecular analyses combining the 26S rRNA gene (D1/D2 domains) and the internal transcribed spacer (ITS) sequences as well as whole-genome sequence data showed that these strains could not be ascribed to any known species in the basidiomycetous genus Phaffia, and thus they are considered to represent a novel species for which the name Phaffia brasiliana sp. nov. is proposed. The holotype is CBS 16121T and the MycoBank number is MB 839315. The occurrence of P. brasiliana in a tropical region is unique for the genus, since all other species occur in temperate regions. Two factors appear to contribute to the distribution of the novel taxon: first, the region where it was found has relatively moderate temperature ranges and, second, an adaptation to grow or withstand temperatures higher than those of the other species in the genus seems to be in place.


Asunto(s)
Basidiomycota/clasificación , Filogenia , Bosque Lluvioso , Microbiología del Suelo , Basidiomycota/aislamiento & purificación , Brasil , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34762580

RESUMEN

Four yeast isolates with an affinity to the genus Wickerhamiella were obtained from beach sand, a marine zoanthid and a tree exudate at different localities in Brazil. Two other isolates with almost identical ITS and D1/D2 sequences of the large subunit rRNA gene were isolated from the small intestine of cattle and a grease trap in Thailand. These isolates represent a novel species phylogenetically related to Wickerhamiella verensis, Wickerhamiella osmotolerans, Wickerhamiella tropicalis, Wickerhamiella sorbophila and Wickerhamiella infanticola. The novel species differs by 15-30 nucleotide differences from these species in the D1/D2 sequences. The name Wickerhamiella martinezcruziae f.a., sp. nov. is proposed. The holotype of Wickerhamiella martinezcruziae sp. nov. is CBS 16104T. The MycoBank number is MB 839328.


Asunto(s)
Filogenia , Saccharomycetales , Animales , Composición de Base , Brasil , Bovinos/microbiología , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Intestino Delgado/microbiología , Técnicas de Tipificación Micológica , Exudados de Plantas , ARN Ribosómico 16S/genética , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , Arena/microbiología , Análisis de Secuencia de ADN , Tailandia , Clima Tropical
19.
Artículo en Inglés | MEDLINE | ID: mdl-34494946

RESUMEN

Six yeast isolates were obtained from rotting wood samples in Brazil and frass of a cerambycid beetle larva in French Guiana. Sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of Cyberlindnera. This novel species is related to Cyberlindnera japonica, Cyberlindnera xylosilytica, Candida easanensis and Candida maesa. It is heterothallic and produces asci with two or four hat-shaped ascospores. The name Cyberlindnera dasilvae sp. nov. is proposed to accommodate the novel species. The holotype of Cy. dasilvae is CBS 16129T and the designated paratype is CBS 16584. The MycoBank number is 838252. All isolates of Cy. dasilvae were able to convert xylose into xylitol with maximum xylitol production within 60 and 72 h. The isolates produced xylitol with values ranging from 12.61 to 31.79 g l-1 in yeast extract-peptone-xylose medium with 5% xylose. When the isolates were tested in sugarcane bagasse hydrolysate containing around 35-38 g l-1d-xylose, isolate UFMG-CM-Y519 showed maximum xylitol production.


Asunto(s)
Escarabajos/microbiología , Filogenia , Saccharomycetales/clasificación , Madera , Xilitol , Animales , ADN de Hongos/genética , ADN Espaciador Ribosómico , Heces/microbiología , Larva/microbiología , Técnicas de Tipificación Micológica , Saccharomycetales/aislamiento & purificación , Análisis de Secuencia de ADN , Madera/microbiología , Xilitol/metabolismo
20.
Extremophiles ; 25(1): 77-84, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33416982

RESUMEN

We evaluated the fungal diversity in two lakes on the South Shetland Islands, using DNA metabarcoding through high-throughput sequencing (HTS). A microcosm experiment was deployed for two consecutive years in lakes on Deception and King George islands to capture potential decomposer freshwater fungi. Analyses of the baits revealed 258,326 DNA reads distributed in 34 fungal taxa of the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota and Rozellomycota. Tetracladium marchalianum, Tetracladium sp., Rozellomycota sp., Fungal sp. 1 and Fungal sp. 2 were the most common taxa detected. However, the majority of the communities comprised intermediate and rare taxa. Both fungal communities displayed moderate indices of diversity, richness and dominance. Only six taxa were detected in both lakes, including the most dominant T. marchalianum and Tetracladium sp. The high numbers of reads of the known aquatic saprotrophic hyphomycetes T. marchalianum and Tetracladium sp. in the baits suggest that these fungi may digest organic material in Antarctic lakes, releasing available carbon and nutrients to the other aquatic organisms present in the complex lake food web. Our data confirm that the use of cotton baits together with HTS approaches can be appropriate to study the diversity of resident freshwater fungi present in Antarctic lakes.


Asunto(s)
Código de Barras del ADN Taxonómico , Hongos/clasificación , Lagos/microbiología , Regiones Antárticas , Biodiversidad , ADN de Hongos/genética , Islas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA