Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 294(27): 10579-10595, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31138645

RESUMEN

Eukaryotic DNA polymerase (Pol) X family members such as Pol µ and terminal deoxynucleotidyl transferase (TdT) are important components for the nonhomologous DNA end-joining (NHEJ) pathway. TdT participates in a specialized version of NHEJ, V(D)J recombination. It has primarily nontemplated polymerase activity but can take instructions across strands from the downstream dsDNA, and both activities are highly dependent on a structural element called Loop1. However, it is unclear whether Pol µ follows the same mechanism, because the structure of its Loop1 is disordered in available structures. Here, we used a chimeric TdT harboring Loop1 of Pol µ that recapitulated the functional properties of Pol µ in ligation experiments. We solved three crystal structures of this TdT chimera bound to several DNA substrates at 1.96-2.55 Å resolutions, including a full DNA double-strand break (DSB) synapsis. We then modeled the full Pol µ sequence in the context of one these complexes. The atomic structure of an NHEJ junction with a Pol X construct that mimics Pol µ in a reconstituted system explained the distinctive properties of Pol µ compared with TdT. The structure suggested a mechanism of base selection relying on Loop1 and taking instructions via the in trans templating base independently of the primer strand. We conclude that our atomic-level structural observations represent a paradigm shift for the mechanism of base selection in the Pol X family of DNA polymerases.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Nucleotidilexotransferasa/química , ADN Polimerasa Dirigida por ADN/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico/genética , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Nucleotidilexotransferasa/genética , ADN Nucleotidilexotransferasa/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Isomerismo , Ratones , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Alineación de Secuencia , Especificidad por Sustrato
2.
Nucleic Acids Res ; 46(12): 6271-6284, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29788485

RESUMEN

Nucleic acid aptamers, especially RNA, exhibit valuable advantages compared to protein therapeutics in terms of size, affinity and specificity. However, the synthesis of libraries of large random RNAs is still difficult and expensive. The engineering of polymerases able to directly generate these libraries has the potential to replace the chemical synthesis approach. Here, we start with a DNA polymerase that already displays a significant template-free nucleotidyltransferase activity, human DNA polymerase theta, and we mutate it based on the knowledge of its three-dimensional structure as well as previous mutational studies on members of the same polA family. One mutant exhibited a high tolerance towards ribonucleotides (NTPs) and displayed an efficient ribonucleotidyltransferase activity that resulted in the assembly of long RNA polymers. HPLC analysis and RNA sequencing of the products were used to quantify the incorporation of the four NTPs as a function of initial NTP concentrations and established the randomness of each generated nucleic acid sequence. The same mutant revealed a propensity to accept other modified nucleotides and to extend them in long fragments. Hence, this mutant can deliver random natural and modified RNA polymers libraries ready to use for SELEX, with custom lengths and balanced or unbalanced ratios.


Asunto(s)
Aptámeros de Nucleótidos , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ARN/biosíntesis , ADN Polimerasa Dirigida por ADN/química , Humanos , Mutación , Nucleótidos/metabolismo , Ribonucleótidos/metabolismo , ADN Polimerasa theta
3.
EMBO J ; 34(8): 1126-42, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25762590

RESUMEN

Eukaryotic DNA polymerase mu of the PolX family can promote the association of the two 3'-protruding ends of a DNA double-strand break (DSB) being repaired (DNA synapsis) even in the absence of the core non-homologous end-joining (NHEJ) machinery. Here, we show that terminal deoxynucleotidyltransferase (TdT), a closely related PolX involved in V(D)J recombination, has the same property. We solved its crystal structure with an annealed DNA synapsis containing one micro-homology (MH) base pair and one nascent base pair. This structure reveals how the N-terminal domain and Loop 1 of Tdt cooperate for bridging the two DNA ends, providing a templating base in trans and limiting the MH search region to only two base pairs. A network of ordered water molecules is proposed to assist the incorporation of any nucleotide independently of the in trans templating base. These data are consistent with a recent model that explains the statistics of sequences synthesized in vivo by Tdt based solely on this dinucleotide step. Site-directed mutagenesis and functional tests suggest that this structural model is also valid for Pol mu during NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/química , Células Eucariotas/metabolismo , Animales , Secuencia de Bases , Cristalografía por Rayos X , ADN Nucleotidilexotransferasa/química , ADN Nucleotidilexotransferasa/fisiología , ADN Polimerasa Dirigida por ADN/fisiología , Ratones , Modelos Moleculares , Conformación Proteica , Recombinación V(D)J
4.
Nat Commun ; 12(1): 2420, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893297

RESUMEN

Bacteriophages have long been known to use modified bases in their DNA to prevent cleavage by the host's restriction endonucleases. Among them, cyanophage S-2L is unique because its genome has all its adenines (A) systematically replaced by 2-aminoadenines (Z). Here, we identify a member of the PrimPol family as the sole possible polymerase of S-2L and we find it can incorporate both A and Z in front of a T. Its crystal structure at 1.5 Å resolution confirms that there is no structural element in the active site that could lead to the rejection of A in front of T. To resolve this contradiction, we show that a nearby gene is a triphosphohydolase specific of dATP (DatZ), that leaves intact all other dNTPs, including dZTP. This explains the absence of A in S-2L genome. Crystal structures of DatZ with various ligands, including one at sub-angstrom resolution, allow to describe its mechanism as a typical two-metal-ion mechanism and to set the stage for its engineering.


Asunto(s)
2-Aminopurina/análogos & derivados , Adenina/química , Bacteriófagos/genética , Cianobacterias/virología , ADN Viral/química , Synechococcus/virología , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenina/metabolismo , Bacteriófagos/metabolismo , Sitios de Unión/genética , Biocatálisis , ADN Primasa/química , ADN Primasa/genética , ADN Primasa/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Dominios Proteicos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
PLoS One ; 16(4): e0250610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33914787

RESUMEN

To stop the COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which caused more than 2.5 million deaths to date, new antiviral molecules are urgently needed. The replication of SARS-CoV-2 requires the RNA-dependent RNA polymerase (RdRp), making RdRp an excellent target for antiviral agents. RdRp is a multi-subunit complex composed of 3 viral proteins named nsp7, nsp8 and nsp12 that ensure the ~30 kb RNA genome's transcription and replication. The main strategies employed so far for the overproduction of RdRp consist of expressing and purifying the three subunits separately before assembling the complex in vitro. However, nsp12 shows limited solubility in bacterial expression systems and is often produced in insect cells. Here, we describe an alternative strategy to co-express the full SARS-CoV-2 RdRp in E. coli, using a single plasmid. Characterization of the purified recombinant SARS-CoV-2 RdRp shows that it forms a complex with the expected (nsp7)(nsp8)2(nsp12) stoichiometry. RNA polymerization activity was measured using primer-extension assays showing that the purified enzyme is functional. The purification protocol can be achieved in one single day, surpassing in speed all other published protocols. Our construct is ideally suited for screening RdRp and its variants against very large chemical compounds libraries and has been made available to the scientific community through the Addgene plasmid depository (Addgene ID: 165451).


Asunto(s)
Clonación Molecular , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Escherichia coli/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , COVID-19/virología , Clonación Molecular/métodos , ARN Polimerasa Dependiente de ARN de Coronavirus/aislamiento & purificación , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo
6.
Structure ; 24(9): 1452-63, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27499438

RESUMEN

Eukaryotic DNA polymerase of the polX family, such as pol µ and terminal deoxynucleotidyl transferase (TdT), are key components of the non-homologous end-joining or V(D)J recombination machinery, respectively. The established role of TdT is to add random nucleotides during V(D)J recombination. Here we show that TdT also has a templated-polymerase activity, similar to pol µ, in the presence of higher concentrations of a downstream DNA duplex, and performs a micro-homology single base-pair search to align the DNA synapsis. To understand the molecular basis of this alignment, we solve crystal structures of TdT with four DNA strands and study the influence of the 3' protruding end. Two mutations in TdT inspired by sequence alignments with pol µ further improve the templated activity. We propose that both templated and untemplated activities of TdT are needed to explain the distributions of lengths of N regions observed experimentally in T cell receptors and antibodies.


Asunto(s)
ADN Nucleotidilexotransferasa/química , ADN Polimerasa Dirigida por ADN/química , ADN/química , Recombinación V(D)J , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , ADN Nucleotidilexotransferasa/genética , ADN Nucleotidilexotransferasa/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Expresión Génica , Humanos , Modelos Moleculares , Nucleótidos/química , Nucleótidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
J Mol Biol ; 425(22): 4334-52, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23856622

RESUMEN

Terminal deoxynucleotidyltransferase (Tdt) is a non-templated eukaryotic DNA polymerase of the polX family that is responsible for the random addition of nucleotides at the V(D)J junctions of immunoglobulins and T-cell receptors. Here we describe a series of high-resolution X-ray structures that mimic the pre-catalytic state, the post-catalytic state and a competent state that can be transformed into the two other ones in crystallo via the addition of dAMPcPP and Zn(2+), respectively. We examined the effect of Mn(2+), Co(2+) and Zn(2+) because they all have a marked influence on the kinetics of the reaction. We demonstrate a dynamic role of divalent transition metal ions bound to site A: (i) Zn(2+) (or Co(2+)) in Metal A site changes coordination from octahedral to tetrahedral after the chemical step, which explains the known higher affinity of Tdt for the primer strand when these ions are present, and (ii) metal A has to leave to allow the translocation of the primer strand and to clear the active site, a typical feature for a ratchet-like mechanism. Except for Zn(2+), the sugar puckering of the primer strand 3' terminus changes from C2'-endo to C3'-endo during catalysis. In addition, our data are compatible with a scheme where metal A is the last component that binds to the active site to complete its productive assembly, as already inferred in human pol beta. The new structures have potential implications for modeling pol mu, a closely related polX implicated in the repair of DNA double-strand breaks, in a complex with a DNA synapsis.


Asunto(s)
ADN Nucleotidilexotransferasa/química , Catálisis , Dominio Catalítico , Cobalto/química , Cobalto/metabolismo , Cristalografía por Rayos X , ADN Nucleotidilexotransferasa/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Humanos , Iones/química , Iones/metabolismo , Ligandos , Metales/química , Metales/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Zinc/química , Zinc/metabolismo
8.
Vaccine ; 24(33-34): 5997-6008, 2006 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-16814434

RESUMEN

Recombinant homologues of the Plasmodium merozoite surface protein 1 C-terminus are leading blood stage malaria vaccine candidates. MSP1 is anchored to the merozoite plasma membrane in vivo by a glycosyl-phosphatidyl-inositol (GPI) moiety, implicated in malaria pathology. Two types of recombinant Plasmodium falciparum MSP1p19 (PfMSP1p19) expressed in baculovirus/insect cells are described here: (1) a soluble, secreted form (PfMSP1p19S) and (2) detergent soluble cellular form(s) (PfMSP1p19+A), released from the infected cell surface by treatment with GPI specific phosphatidyl-inositol phospholipase C (PI-PLC). Soluble and cellular PfMSP1p19 were purified and characterized using SDS-PAGE, mass spectrometry (MS), N-terminal amino acid sequencing, gel filtration and glycan analyses. Quantitative inositol dosage suggested that surface GPI processed entities constituted only 14% of the purified cellular PfMSP1p19+A, with GPI unprocessed forms likely recovered in the endoplasmic reticulum. Nevertheless, this preparation has dramatic immuno-stimulatory activity to be described elsewhere. The interest of these results for both malaria specific and generic vaccine development are discussed.


Asunto(s)
Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Proteína 1 de Superficie de Merozoito/química , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/inmunología , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Línea Celular , Cromatografía en Gel , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Vectores Genéticos , Vacunas contra la Malaria/aislamiento & purificación , Vacunas contra la Malaria/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteína 1 de Superficie de Merozoito/aislamiento & purificación , Proteína 1 de Superficie de Merozoito/metabolismo , Datos de Secuencia Molecular , Plasmodium falciparum/genética , Polisacáridos/análisis , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de Proteína , Solubilidad , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA