Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(1-2): 127-143.e24, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633903

RESUMEN

DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.


Asunto(s)
Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas Bacterianas/metabolismo , Inestabilidad Cromosómica/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Inestabilidad Genómica , Humanos , Proteínas de Transporte de Membrana/fisiología , Mutagénesis , Mutación , Factores de Transcripción/metabolismo
2.
Mol Cell ; 83(8): 1298-1310.e4, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36965481

RESUMEN

Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Ciprofloxacina/farmacología , ADN/metabolismo , ARN/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
Mol Cell ; 74(4): 785-800.e7, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30948267

RESUMEN

Antibiotics can induce mutations that cause antibiotic resistance. Yet, despite their importance, mechanisms of antibiotic-promoted mutagenesis remain elusive. We report that the fluoroquinolone antibiotic ciprofloxacin (cipro) induces mutations by triggering transient differentiation of a mutant-generating cell subpopulation, using reactive oxygen species (ROS). Cipro-induced DNA breaks activate the Escherichia coli SOS DNA-damage response and error-prone DNA polymerases in all cells. However, mutagenesis is limited to a cell subpopulation in which electron transfer together with SOS induce ROS, which activate the sigma-S (σS) general-stress response, which allows mutagenic DNA-break repair. When sorted, this small σS-response-"on" subpopulation produces most antibiotic cross-resistant mutants. A U.S. Food and Drug Administration (FDA)-approved drug prevents σS induction, specifically inhibiting antibiotic-promoted mutagenesis. Further, SOS-inhibited cell division, which causes multi-chromosome cells, promotes mutagenesis. The data support a model in which within-cell chromosome cooperation together with development of a "gambler" cell subpopulation promote resistance evolution without risking most cells.


Asunto(s)
Antibacterianos/efectos adversos , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Mutagénesis/genética , División Celular/efectos de los fármacos , Ciprofloxacina/efectos adversos , Daño del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Mutación , Especies Reactivas de Oxígeno/metabolismo , Respuesta SOS en Genética/efectos de los fármacos , Factor sigma/genética
4.
Cell ; 136(6): 998-1000, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303843

RESUMEN

Slade et al. (2009) describe in this issue how the genome of the bacterium Deinococcus radiodurans gets reassembled after being shattered by high-dose radiation. In contrast to the extreme nature of the damage, the steps of repair appear surprisingly ordinary. So, why can't all organisms carry out extreme genome repair?


Asunto(s)
Reparación del ADN , Deinococcus/genética , Deinococcus/efectos de la radiación , Daño del ADN , Genoma Bacteriano
5.
J Bacteriol ; 205(12): e0027223, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38018999

RESUMEN

In this issue of the Journal of Bacteriology, N. J. Bonde, E. A. Wood, K. S. Myers, M. Place, J. L. Keck, and M. M. Cox (J Bacteriol 205:e00184-23, 2023, https//doi.org/10.1128/jb.00184-23) used an unbiased transposon-sequencing (Tn-seq) screen to identify proteins required for life when cells lose the RecG branched-DNA helicase (synthetic lethality). The proteins' identities indicate pathways that prevent endogenous DNA damage, pathways that prevent its homology-directed repair (HDR) "strand-exchange" intermediates between sister chromosomes, and pathways that resolve those intermediates. All avoid intermediate pile-up, which blocks chromosome segregation, causing "death-by-recombination." DNA damage is managed to regulate crucial but potentially lethal HDR.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Reparación del ADN , Recombinación Genética , ADN Helicasas/genética
6.
Nature ; 550(7675): 214-218, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-28976965

RESUMEN

Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.


Asunto(s)
Reparación del ADN , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Roturas del ADN de Doble Cadena , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Exodesoxirribonucleasa V/metabolismo , Unión Proteica , Rec A Recombinasas/metabolismo
7.
Trends Genet ; 35(5): 383-395, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962000

RESUMEN

Holliday junctions (HJs) are DNA intermediates in homology-directed DNA repair and replication stalling, but until recently were undetectable in living cells. We review how an engineered protein that traps and labels HJs in Escherichia coli illuminates the biology of DNA and cancer. HJ chromatin immunoprecipitation with deep sequencing (ChIP-seq) analysis showed the directionality of double-strand break (DSB) repair in the E. coli genome. Quantification of HJs as fluorescent foci in live cells revealed that the commonest spontaneous problem repaired via HJs is replication-dependent single-stranded DNA gaps, not DSBs. Focus quantification also indicates that RecQ DNA helicase plays dual roles in promoting repair HJs and preventing replication-stall HJs in an E. coli model of RAD51-overexpressing (most) cancers. Moreover, cancer transcriptomes imply that most cancers suffer frequent fork stalls that are reduced by the HJ removers EME1 and GEN1, as well as by the human RecQ orthologs BLM and RECQL4-surprising potential procancer roles for these known cancer-preventing proteins.


Asunto(s)
ADN Bacteriano , Susceptibilidad a Enfermedades , Neoplasias/etiología , Reparación del ADN , Replicación del ADN , ADN Cruciforme , Escherichia coli/genética , Genoma , Humanos , Imagen Molecular , Neoplasias/metabolismo , Neoplasias/patología , RecQ Helicasas/metabolismo
8.
PLoS Genet ; 15(4): e1007995, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30933985

RESUMEN

Mutations drive evolution and were assumed to occur by chance: constantly, gradually, roughly uniformly in genomes, and without regard to environmental inputs, but this view is being revised by discoveries of molecular mechanisms of mutation in bacteria, now translated across the tree of life. These mechanisms reveal a picture of highly regulated mutagenesis, up-regulated temporally by stress responses and activated when cells/organisms are maladapted to their environments-when stressed-potentially accelerating adaptation. Mutation is also nonrandom in genomic space, with multiple simultaneous mutations falling in local clusters, which may allow concerted evolution-the multiple changes needed to adapt protein functions and protein machines encoded by linked genes. Molecular mechanisms of stress-inducible mutation change ideas about evolution and suggest different ways to model and address cancer development, infectious disease, and evolution generally.


Asunto(s)
Mutación , Adaptación Biológica/genética , Animales , Bacterias/genética , Reparación del ADN/genética , Escherichia coli/genética , Evolución Molecular , Humanos , Modelos Genéticos , Mutagénesis , Estrés Fisiológico/genética
9.
Int J Cancer ; 146(7): 1862-1878, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31696517

RESUMEN

We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large-scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome-wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never- and ever-smokers). We performed replication analysis using lung data from the Genotype-Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever-smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E-99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E-6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3-adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E-5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk.


Asunto(s)
Biomarcadores de Tumor , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Pulmonares/genética , Transcriptoma , Línea Celular Tumoral , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
10.
PLoS Genet ; 13(7): e1006733, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28727736

RESUMEN

Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS oxidation of DNA potentially regulated by ROS regulators.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Mutagénesis/genética , Estrés Fisiológico/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , ADN Polimerasa Dirigida por ADN/biosíntesis , ADN Polimerasa Dirigida por ADN/genética , Nucleótidos de Desoxiguanina/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Respuesta SOS en Genética/genética , Factor sigma/biosíntesis , Factor sigma/genética
11.
Curr Genet ; 64(4): 769-776, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29294174

RESUMEN

Mechanisms of mutation upregulated by stress responses have been described in several organisms from bacteria to human. These mechanisms might accelerate genetic change specifically when cells are maladapted to their environment. Stress-induced mutation mechanisms differ in their genetic requirements from mutation in growing cells, occurring by different mechanisms in different assay systems, but having in common a requirement for the induction of stress-responses. Here, we review progress in two areas relevant to stress-response-dependent mutagenic DNA break repair mechanisms in Escherichia coli. First, we review evidence that relates mutation to transcription. This connection might allow mutagenesis in transcribed regions, including those relevant to any stress being experienced, opening the possibility that mutations could be targeted to regions where mutation might be advantageous under conditions of a specific stress. We review the mechanisms by which replication initiated by transcription can lead to mutation. Second, we review recent findings that, although stress-induced mutation does not require exogenous DNA-damaging agents, it does require the presence of damaged bases in DNA. For starved E. coli, endogenous oxygen radicals cause these altered bases. We postulate that damaged bases stall the replisome, which, we suggest, is required for DNA-polymerase exchange, allowing the action of low-fidelity DNA polymerases that promote mutation.


Asunto(s)
Reparación del ADN/genética , Escherichia coli/genética , ARN/genética , Estrés Fisiológico/genética , Daño del ADN/genética , Replicación del ADN/genética , Escherichia coli/metabolismo , Humanos , Mutación , Oxígeno/metabolismo
12.
Nucleic Acids Res ; 44(3): 1285-97, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26786318

RESUMEN

There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ'χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-C(tag)) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except ß) from this strain contained one molecule of γ-C(tag) per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ'χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F' episome.


Asunto(s)
ADN Polimerasa III/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Holoenzimas/metabolismo , ADN Polimerasa III/química , ADN Polimerasa III/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Citometría de Flujo , Dosificación de Gen , Holoenzimas/química , Holoenzimas/genética , Immunoblotting , Viabilidad Microbiana/genética , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
13.
Nucleic Acids Res ; 44(5): e41, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26578563

RESUMEN

With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter-ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing ('forward genomics') demonstrates a strategy that could similarly enable rapid screens in many other microbes.


Asunto(s)
Escherichia coli/genética , Biblioteca de Genes , Genoma Bacteriano , Genómica/métodos , Mutagénesis Insercional/métodos , Mutación , Algoritmos , Bacteriófago P1/genética , Escherichia coli/efectos de los fármacos , Etilnitrosourea/farmacología , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
14.
Proc Natl Acad Sci U S A ; 112(1): 178-83, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25492931

RESUMEN

Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli. Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer.


Asunto(s)
Farmacorresistencia Microbiana , Escherichia coli/citología , Escherichia coli/fisiología , División Celular Asimétrica/efectos de los fármacos , Cromosomas Bacterianos/metabolismo , Ciprofloxacina/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Modelos Biológicos , Análisis de Secuencia de ADN
15.
J Bacteriol ; 198(24): 3296-3308, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27698081

RESUMEN

Microbes and human cells possess mechanisms of mutagenesis activated by stress responses. Stress-inducible mutagenesis mechanisms may provide important models for mutagenesis that drives host-pathogen interactions, antibiotic resistance, and possibly much of evolution generally. In Escherichia coli, repair of DNA double-strand breaks is switched to a mutagenic mode, using error-prone DNA polymerases, via the SOS DNA damage and general (σS) stress responses. We investigated small RNA (sRNA) clients of Hfq, an RNA chaperone that promotes mutagenic break repair (MBR), and found that GcvB promotes MBR by allowing a robust σS response, achieved via opposing the membrane stress (σE) response. Cells that lack gcvB were MBR deficient and displayed reduced σS-dependent transcription but not reduced σS protein levels. The defects in MBR and σS-dependent transcription in ΔgcvB cells were alleviated by artificially increasing σS levels, implying that GcvB promotes mutagenesis by allowing a normal σS response. ΔgcvB cells were highly induced for the σE response, and blocking σE response induction restored both mutagenesis and σS-promoted transcription. We suggest that GcvB may promote the σS response and mutagenesis indirectly, by promoting membrane integrity, which keeps σE levels lower. At high levels, σE might outcompete σS for binding RNA polymerase and so reduce the σS response and mutagenesis. The data show the delicate balance of stress response modulation of mutagenesis. IMPORTANCE: Mutagenesis mechanisms upregulated by stress responses promote de novo antibiotic resistance and cross-resistance in bacteria, antifungal drug resistance in yeasts, and genome instability in cancer cells under hypoxic stress. This paper describes the role of a small RNA (sRNA) in promoting a stress-inducible-mutagenesis mechanism, mutagenic DNA break repair in Escherichia coli The roles of many sRNAs in E. coli remain unknown. This study shows that ΔgcvB cells, which lack the GcvB sRNA, display a hyperactivated membrane stress response and reduced general stress response, possibly because of sigma factor competition for RNA polymerase. This results in a mutagenic break repair defect. The data illuminate a function of GcvB sRNA in opposing the membrane stress response, and thus indirectly upregulating mutagenesis.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Membrana Celular/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mutágenos/toxicidad , ARN Pequeño no Traducido/metabolismo , Aminoácido Oxidorreductasas/genética , Membrana Celular/genética , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , ARN Pequeño no Traducido/genética , Factor sigma/genética , Factor sigma/metabolismo
16.
Nat Genet ; 39(6): 797-802, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17529976

RESUMEN

Spontaneous DNA breakage is predicted to be a frequent, inevitable consequence of DNA replication and is thought to underlie much of the genomic change that fuels cancer and evolution. Despite its importance, there has been little direct measurement of the amounts, types, sources and fates of spontaneous DNA lesions in living cells. We present a direct, sensitive flow cytometric assay in single living Escherichia coli cells for DNA lesions capable of inducing the SOS DNA damage response, and we report its use in quantification of spontaneous DNA double-strand breaks (DSBs). We report efficient detection of single chromosomal DSBs and rates of spontaneous breakage approximately 20- to 100-fold lower than predicted. In addition, we implicate DNA replication in the origin of spontaneous DSBs with the finding of fewer spontaneous DSBs in a mutant with altered DNA polymerase III. The data imply that spontaneous DSBs induce genomic changes and instability 20-100 times more potently than previously appreciated. Finally, FACS demonstrated two main cell fates after spontaneous DNA damage: viability with or without resumption of proliferation.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , ADN Bacteriano/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Cromosomas Bacterianos , Reparación del ADN , Replicación del ADN , Escherichia coli/metabolismo , Exodesoxirribonucleasa V/metabolismo , Citometría de Flujo , Respuesta SOS en Genética
17.
Nat Rev Genet ; 10(8): 551-64, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19597530

RESUMEN

Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.


Asunto(s)
Dosificación de Gen , Recombinación Genética , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos
18.
Bioessays ; 34(10): 885-92, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22911060

RESUMEN

Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the "modern synthesis" of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen-host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer.


Asunto(s)
Antiinfecciosos/farmacología , Escherichia coli/genética , Evolución Molecular , Mutagénesis , Estrés Fisiológico , Animales , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Bacteriano/genética , Diseño de Fármacos , Farmacorresistencia Microbiana/genética , Escherichia coli/fisiología , Proteínas de Escherichia coli/fisiología , Humanos , Selección Genética
19.
Proc Natl Acad Sci U S A ; 108(33): 13659-64, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21808005

RESUMEN

Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.


Asunto(s)
Evolución Biológica , Reparación del ADN , Escherichia coli/genética , Mutación/genética , Estrés Fisiológico/genética , Mutagénesis , Inanición
20.
Cancer Epidemiol Biomarkers Prev ; 33(3): 389-399, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180474

RESUMEN

BACKGROUND: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer. METHODS: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer. RESULTS: Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior. CONCLUSIONS: We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT: Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Fumadores , Estudio de Asociación del Genoma Completo , Proyectos de Investigación , Fumar/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA