Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Reprod ; 110(2): 310-328, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37883444

RESUMEN

The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , Embarazo , Femenino , Animales , Ratones , Serotonina/metabolismo , Placenta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Encéfalo/metabolismo , Trofoblastos/metabolismo , Células Madre/metabolismo
2.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892320

RESUMEN

Declining estrogen (E2) leads to physical inactivity and adipose tissue (AT) dysfunction. Mechanisms are not fully understood, but E2's effects on dopamine (DA) activity in the nucleus accumbens (NAc) brain region may mediate changes in mood and voluntary physical activity (PA). Our prior work revealed that loss of E2 robustly affected NAc DA-related gene expression, and the pattern correlated with sedentary behavior and visceral fat. The current study used a new transgenic mouse model (D1ERKO) to determine whether the abolishment of E2 receptor alpha (ERα) signaling within DA-rich brain regions affects PA and AT metabolism. Adult male and female wild-type (WT) and D1ERKO (KD) mice were assessed for body composition, energy intake (EE), spontaneous PA (SPA), and energy expenditure (EE); underwent glucose tolerance testing; and were assessed for blood biochemistry. Perigonadal white AT (PGAT), brown AT (BAT), and NAc brain regions were assessed for genes and proteins associated with DA, E2 signaling, and metabolism; AT sections were also assessed for uncoupling protein (UCP1). KD mice had greater lean mass and EE (genotype effects) and a visible change in BAT phenotype characterized by increased UCP1 staining and lipid depletion, an effect seen only among females. Female KD had higher NAc Oprm1 transcript levels and greater PGAT UCP1. This group tended to have improved glucose tolerance (p = 0.07). NAc suppression of Esr1 does not appear to affect PA, yet it may directly affect metabolism. This work may lead to novel targets to improve metabolic dysfunction following E2 loss, possibly by targeting the NAc.


Asunto(s)
Tejido Adiposo , Metabolismo Energético , Receptor alfa de Estrógeno , Núcleo Accumbens , Receptores de Dopamina D1 , Animales , Núcleo Accumbens/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Ratones , Femenino , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Metabolismo Energético/genética , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Ratones Noqueados , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Encéfalo/metabolismo , Ratones Transgénicos , Técnicas de Silenciamiento del Gen , Ratones Endogámicos C57BL
3.
Proc Natl Acad Sci U S A ; 117(9): 4642-4652, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071231

RESUMEN

Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 µg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Encéfalo/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Sulfonas/toxicidad , Trofoblastos/efectos de los fármacos , Animales , Dopamina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Serotonina/metabolismo , Trofoblastos/metabolismo
4.
Biol Reprod ; 106(4): 676-686, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35024817

RESUMEN

Opioid drugs are analgesics increasingly being prescribed to control pain associated with a wide range of causes. Usage of pregnant women has dramatically increased in the past decades. Neonates born to these women are at risk for neonatal abstinence syndrome (also referred to as neonatal opioid withdrawal syndrome). Negative birth outcomes linked with maternal opioid use disorder include compromised fetal growth, premature birth, reduced birthweight, and congenital defects. Such infants require lengthier hospital stays necessitating rising health care costs, and they are at greater risk for neurobehavioral and other diseases. Thus, it is essential to understand the genesis of such disorders. As the primary communication organ between mother and conceptus, the placenta itself is susceptible to opioid effects but may be key to understanding how these drugs affect long-term offspring health and potential avenue to prevent later diseases. In this review, we will consider the evidence that placental responses are regulated through an endogenous opioid system. However, maternal consumption of opioid drugs can also bind and act through opioid receptors express by trophoblast cells of the placenta. Thus, we will also discuss the current human and rodent studies that have examined the effects of opioids on the placenta. These drugs might affect placental hormones associated with maternal recognition of pregnancy, including placental lactogens and human chorionic gonadotropin in rodents and humans, respectively. A further understanding of how such drugs affect the placenta may open up new avenues for early diagnostic and remediation approaches.


Asunto(s)
Síndrome de Abstinencia Neonatal , Trastornos Relacionados con Opioides , Complicaciones del Embarazo , Analgésicos Opioides/efectos adversos , Femenino , Humanos , Recién Nacido , Síndrome de Abstinencia Neonatal/complicaciones , Síndrome de Abstinencia Neonatal/tratamiento farmacológico , Trastornos Relacionados con Opioides/complicaciones , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/prevención & control , Placenta , Embarazo , Complicaciones del Embarazo/tratamiento farmacológico
5.
Biol Reprod ; 106(5): 826-834, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35020819

RESUMEN

Bisphenol A (BPA), an endocrine-disrupting chemical, is used to produce a wide variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impacts of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts, and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.


Asunto(s)
Disruptores Endocrinos , Nacimiento Prematuro , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Femenino , Humanos , Recién Nacido , Fenoles/toxicidad , Placenta/metabolismo , Embarazo , Nacimiento Prematuro/metabolismo
6.
J Neurosci Res ; 99(1): 271-283, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32108381

RESUMEN

All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the  placenta to various in utero stressors may lead to long-standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta-brain-axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental-specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental-brain-axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.


Asunto(s)
Encéfalo/fisiología , Desarrollo Fetal/fisiología , Placenta/fisiología , Animales , Femenino , Humanos , Masculino , Trastornos del Neurodesarrollo/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología
7.
Biol Reprod ; 105(5): 1126-1139, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34344022

RESUMEN

Histone proteins undergo various modifications that alter chromatin structure, including addition of methyl groups. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that methylates lysine residue 27, and thereby suppresses gene expression. EZH2 plays integral roles in the uterus and other reproductive organs. We have previously shown that conditional deletion of uterine EZH2 results in increased proliferation of luminal and glandular epithelial cells, and RNA-seq analyses reveal several uterine transcriptomic changes in Ezh2 conditional (c) knockout (KO) mice that can affect estrogen signaling pathways. To pinpoint the origin of such gene expression changes, we used the recently developed spatial transcriptomics (ST) method with the hypotheses that Ezh2cKO mice would predominantly demonstrate changes in epithelial cells and/or ablation of this gene would disrupt normal epithelial/stromal gene expression patterns. Uteri were collected from ovariectomized adult WT and Ezh2cKO mice and analyzed by ST. Asb4, Cxcl14, Dio2, and Igfbp5 were increased, Sult1d1, Mt3, and Lcn2 were reduced in Ezh2cKO uterine epithelium vs. WT epithelium. For Ezh2cKO uterine stroma, differentially expressed key hub genes included Cald1, Fbln1, Myh11, Acta2, and Tagln. Conditional loss of uterine Ezh2 also appears to shift the balance of gene expression profiles in epithelial vs. stromal tissue toward uterine epithelial cell and gland development and proliferation, consistent with uterine gland hyperplasia in these mice. Current findings provide further insight into how EZH2 may selectively affect uterine epithelial and stromal compartments. Additionally, these transcriptome data might provide mechanistic understanding and valuable biomarkers for human endometrial disorders with epigenetic underpinnings.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Ratones/genética , Transcriptoma , Útero/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Perfilación de la Expresión Génica , Ratones/metabolismo , Ratones Noqueados
8.
Horm Behav ; 136: 105043, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34507054

RESUMEN

Endocrine disrupting chemicals, such as bisphenol A (BPA) and ethinylestradiol (EE2), are detected in the marine environment from plastic waste and wastewater effluent. However, their impact on reproduction in sexually labile coral reef fish is unknown. The objective of this study was to determine impacts of environmentally relevant concentrations of BPA and EE2 on behavior, brain gene expression, gonadal histology, sex hormone profile, and plasma vitellogenin (Vtg) levels in the anemonefish, Amphiprion ocellaris. A. ocellaris display post-maturational sex change from male to female in nature. Sexually immature, male fish were paired together and fed twice daily with normal food (control), food containing BPA (100 µg/kg), or EE2 (0.02 µg/kg) (n = 9 pairs/group). Aggression toward an intruder male was measured at 1, 3, and 6 months. Blood was collected at 3 and 6 months to measure estradiol (E2), 11-ketotestosterone (11-KT), and Vtg. At the end of the study, fish were euthanized to assess gonad morphology and to measure expression of known sexually dimorphic genes in the brain. Relative to control, BPA decreased aggression, altered brain transcript levels, increased non-vitellogenic and vitellogenic eggs in the gonad, reduced 11-KT, and increased plasma Vtg. In two BPA-treated pairs, both individuals had vitellogenic eggs, which does not naturally occur. EE2 reduced 11-KT in subordinate individuals and altered expression of one transcript in the brain toward the female profile. Results suggest BPA, and to a lesser extent EE2, pollution in coral reef ecosystems could interfere with normal reproductive physiology and behavior of the iconic sexually labile anemonefish.


Asunto(s)
Arrecifes de Coral , Estradiol , Animales , Compuestos de Bencidrilo , Encéfalo , Ecosistema , Estradiol/farmacología , Femenino , Peces , Hormonas Esteroides Gonadales , Gónadas , Masculino , Fenoles , Vitelogeninas/genética
9.
Horm Behav ; 128: 104890, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33221288

RESUMEN

Developmental exposure to endocrine disrupting chemicals (EDCs), e.g., bisphenol A (BPA) or genistein (GEN), causes longstanding epigenome effects. MicroRNAs (miRs) regulate which mRNAs will be translated to proteins and thereby serve as the final checkpoint in epigenetic control. Scant amount is known, however, whether EDCs affect neural miRNA (miR) patterns. We aimed to test the hypothesis that developmental exposure of California mice (Peromyscus californicus) to GEN, BPA, or both chemicals influences hypothalamic miR/small RNA profiles and ascertain the extent such biomolecular alterations correlate with behavioral and metabolic changes. California mice were developmentally exposed to GEN (250 mg/kg feed weight, FW), GEN (250 mg/kg FW)+BPA (5 mg/kg FW), low dose (LD) BPA (5 mg/kg FW), or upper dose (UD) BPA (50 mg/kg FW). Adult offspring were tested in a battery of behavioral and metabolic tests; whereupon, mice were euthanized, brains were collected and frozen, small RNAs were isolated from hypothalamic punches, and subsequently sequenced. California mice exposed to one or both EDCs engaged in one or more repetitive behaviors. GEN, LD BPA, and UD BPA altered aspects of ultrasonic and audible vocalizations. Each EDC exposure led to sex-dependent differences in differentially expressed miR/small RNAs with miR7-2, miR146, and miR148a being increased in all female and male EDC exposed groups. Current findings reveal that developmental exposure to GEN and/or BPA affects hypothalamic miR/small RNA expression patterns, and such changes correlate with EDC-induced behavioral and metabolic alterations. miR146 is likely an important mediator and biomarker of EDC exposure in mammals, including humans.


Asunto(s)
Disruptores Endocrinos , MicroARNs , Animales , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Femenino , Hipotálamo , Masculino , Ratones , MicroARNs/genética , Peromyscus , Caracteres Sexuales
10.
Physiol Genomics ; 52(2): 81-95, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31841397

RESUMEN

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that suppresses gene expression. Previously, we developed a conditional null model where EZH2 is knocked out in uterus. Deletion of uterine EZH2 increased proliferation of luminal and glandular epithelial cells. Herein, we used RNA-Seq in wild-type (WT) and EZH2 conditional knockout (Ezh2cKO) uteri to obtain mechanistic insights into the gene expression changes that underpin the pathogenesis observed in these mice. Ovariectomized adult Ezh2cKO mice were treated with vehicle (V) or 17ß-estradiol (E2; 1 ng/g). Uteri were collected at postnatal day (PND) 75 for RNA-Seq or immunostaining for epithelial proliferation. Weighted gene coexpression network analysis was used to link uterine gene expression patterns and epithelial proliferation. In V-treated mice, 88 transcripts were differentially expressed (DEG) in Ezh2cKO mice, and Bmp5, Crabp2, Lgr5, and Sprr2f were upregulated. E2 treatment resulted in 40 DEG with Krt5, Krt15, Olig3, Crabp1, and Serpinb7 upregulated in Ezh2cKO compared with control mice. Transcript analysis relative to proliferation rates revealed two module eigengenes correlated with epithelial proliferation in WT V vs. Ezh2cKO V and WT E2 vs. Ezh2cKO E2 mice, with a positive relationship in the former and inverse in the latter. Notably, the ESR1, Wnt, and Hippo signaling pathways were among those functionally enriched in Ezh2cKO females. Current results reveal unique gene expression patterns in Ezh2cKO uterus and provide insight into how loss of this critical epigenetic regulator assumingly contributes to uterine abnormalities.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Transcriptoma , Útero/metabolismo , Animales , Proliferación Celular , Análisis por Conglomerados , Biología Computacional , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Estradiol/farmacología , Estrógenos/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Heterocigoto , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , RNA-Seq , Transducción de Señal , Regulación hacia Arriba , Útero/anomalías , Proteínas Wnt/metabolismo
11.
Biol Reprod ; 102(3): 532-538, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31711155

RESUMEN

The placenta is a transient organ but essential for the survival of all mammalian species by allowing for the exchanges of gasses, nutrients, and waste between maternal and fetal placenta. In rodents and humans with a hemochorial placenta, fetal placenta cells are susceptible to pharmaceutical agents and other compounds, as they are bathed directly in maternal blood. The placenta of mice and humans produce high concentrations of serotonin (5-HT) that can induce autocrine and paracrine effects within this organ. Placental 5-HT is the primary source of this neurotransmitter for fetal brain development. Increasing number of pregnant women at risk of depression are being treated with selective serotonin-reuptake inhibitors (SSRIs) that bind to serotonin transporters (SERT), which prevents 5-HT binding and cellular internalization, allowing for accumulation of extracellular 5-HT available to bind to 5-HT(2A) receptor (5-HT(2A)R). In vitro and in vivo findings with SSRI or pharmacological blockage of the 5-HT(2A)R reveal disruptions of 5-HT signaling within the placenta can affect cell proliferation, division, and invasion. In SERT knockout mice, numerous apoptotic trophoblast cells are observed, as well as extensive pathological changes within the junctional zone. Collective data suggest a fine equilibrium in 5-HT signaling is essential for maintaining normal placental structure and function. Deficiencies in placental 5-HT may also result in neurobehavioral abnormalities. Evidence supporting 5-HT production and signaling within the placenta will be reviewed. We will consider whether placental hyposerotonemia or hyperserotonemia results in similar pathophysiological changes in the placenta and other organs. Lastly, open ended questions and future directions will be explored.


Asunto(s)
Encéfalo/embriología , Desarrollo Embrionario/fisiología , Placenta/metabolismo , Serotonina/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Humanos , Embarazo , Resultado del Embarazo , Transducción de Señal/fisiología
12.
Horm Behav ; 121: 104719, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32081742

RESUMEN

Aromatase catalyzes conversion of testosterone to estradiol and is expressed in a variety of tissues, including the brain. Suppression of aromatase adversely affects metabolism and physical activity behavior, but mechanisms remain uncertain. The hypothesis tested herein was that whole body aromatase deletion would cause gene expression changes in the nucleus accumbens (NAc), a brain regulating motivated behaviors such as physical activity, which is suppressed with loss of estradiol. Metabolic and behavioral assessments were performed in male and female wild-type (WT) and aromatase knockout (ArKO) mice. NAc-specific differentially expressed genes (DEGs) were identified with RNAseq, and associations between the measured phenotypic traits were determined. Female ArKO mice had greater percent body fat, reduced spontaneous physical activity (SPA), consumed less energy, and had lower relative resting energy expenditure (REE) than WT females. Such differences were not observed in ArKO males. However, in both sexes, a top DEG was Pts, a gene encoding an enzyme necessary for catecholamine (e.g., dopamine) biosynthesis. In comparing male and female WT mice, top DEGs were related to sexual development/fertility, immune regulation, obesity, dopamine signaling, and circadian regulation. SPA correlated strongly with Per3, a gene regulating circadian function, thermoregulation, and metabolism (r = -0.64, P = .002), which also correlated with adiposity (r = 0.54, P = .01). In conclusion, aromatase ablation leads to gene expression changes in NAc, which may in turn result in reduced SPA and related metabolic abnormalities. These findings may have significance to post-menopausal women and those treated with an aromatase inhibitor.


Asunto(s)
Aromatasa/genética , Actividad Motora/genética , Núcleo Accumbens/metabolismo , Animales , Aromatasa/metabolismo , Metabolismo Energético/genética , Estradiol/metabolismo , Femenino , Expresión Génica , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Caracteres Sexuales , Testosterona/metabolismo
13.
BMC Genomics ; 20(1): 87, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683046

RESUMEN

BACKGROUND: Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex-determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. RESULTS: RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g. zinc finger protein X-linked (Zfx). CONCLUSIONS: This method successfully identified several genes and transcripts that showed expression differences in the brain of adult male and female Amami spiny rat. The functional significance of these findings, especially differential expression of transcripts encoding zinc finger proteins, in this unusual rodent species remains to be determined.


Asunto(s)
Encéfalo/metabolismo , Murinae/genética , Caracteres Sexuales , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Murinae/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Cromosoma Y
14.
Biol Reprod ; 101(2): 392-404, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31141131

RESUMEN

Both membrane and nuclear fractions of estrogen receptor 1 (ESR1) mediate 17ß-estradiol (E2) actions. Mice expressing nuclear (n)ESR1 but lacking membrane (m)ESR1 (nuclear-only estrogen receptor 1 [NOER] mice) show reduced E2 responsivity and reproductive abnormalities culminating in adult male and female infertility. Using this model, we investigated whether reproductive pathologies caused by the synthetic estrogen diethylstilbestrol (DES) are mitigated by mESR1 ablation. Homozygous and heterozygous wild-type (WT and HET, respectively) and NOER male and female mice were subcutaneously injected with DES (1 mg/kg body weight [BW]) or vehicle daily from postnatal day (PND) 1-5. Uterine histology was assessed in select DES-treated females at PND 5, whereas others were ovariectomized at PND 60 and treated with E2 (10 µg/kg BW) or vehicle 2 weeks later. Neonatal DES exposure resulted in ovary-independent epithelial proliferation in the vagina and uterus of WT but not NOER females. Neonatal DES treatment also induced ovary-independent adult expression of classical E2-induced transcripts (e.g., lactoferrin [Ltf] and enhancer of zeste homolog 2 [Ezh2]) in WT but not NOER mice. At PND 90, DES-treated WT and HET males showed smaller testes and a high incidence of bacterial pyogranulomatous inflammation encompassing the testes, epididymis and occasionally the ductus deferens with spread to lumbar lymph nodes; such changes were largely absent in NOER males. Results indicate that male and female NOER mice are protected from deleterious effects of neonatal DES, and thus mESR1 signaling is required for adult manifestation of DES-induced reproductive pathologies in both sexes.


Asunto(s)
Dietilestilbestrol/toxicidad , Receptor alfa de Estrógeno/genética , Estrógenos no Esteroides/toxicidad , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades de los Genitales Masculinos/inducido químicamente , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Útero/metabolismo
15.
Front Neuroendocrinol ; 47: 123-133, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28801100

RESUMEN

Animal and human studies provide evidence that exposure to the endocrine disrupting chemical (EDC), bisphenol A (BPA), can lead to neurobehavioral disorders. Consequently, there is an impetus to identify safer alternatives to BPA. Three bisphenol compounds proposed as potential safer alternatives to BPA are bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, it is not clear whether these other compounds are safer in terms of inducing less endocrine disrupting effects in animals and humans who are now increasingly coming into contact with these BPA-substitutes. In the past few years, several animal studies have shown exposure to these other bisphenols induce similar neurobehavioral disruption as BPA. We will explore in this review article the current studies suggesting these other bisphenols result in neuroendocrine disruptions that may be estrogen receptor-dependent. Current work may aide in designing future studies to test further whether these BPA-substitutes can act as neuroendocrine disruptors.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Sistemas Neurosecretores/efectos de los fármacos , Fenoles/toxicidad , Sulfonas/toxicidad , Animales , Modelos Animales
16.
Reproduction ; 156(1): 1-10, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29692359

RESUMEN

Paternal environment can induce detrimental developmental origins of health and disease (DOHaD) effects in resulting offspring and even future descendants. Such paternal-induced DOHaD effects might originate from alterations in a possible seminal fluid microbiome (SFM) and composite metabolome. Seminal vesicles secrete a slightly basic product enriched with fructose and other carbohydrates, providing an ideal habitat for microorganisms. Past studies confirm the existence of a SFM that is influenced by genetic and nutritional status. Herein, we sought to determine whether treatment of male mice with a combination of antibiotics designed to target SFM induces metabolic alterations in seminal vesicle gland secretions (seminal fluid) and histopathological changes in testes and epididymides. Adult (10- to 12-week-old) National Institutes of Health (NIH) Swiss males (n = 10 per group) were treated with Clindamycin 0.06 mg/kg day, Unasyn (ampicillin/sulbactam) 40 mg/kg day and Baytril (enrofloxacin) 50 mg/kg day designed to target the primary bacteria within the SFM or saline vehicle alone. Fourteen-day antibiotic treatment of males induced metabolomic changes in seminal vesicles with inosine, xanthine and l-glutamic acid decreased but d-fructose increased in glandular secretions. While spermatogenesis was not affected in treated males, increased number of epididymal tubules showed cribriform growth in this group (7 antibiotic-treated males: 3 saline control males; P = 0.01). Antibiotic-treated males showed more severe cribriform cysts. Current findings suggest antibiotic treatment of male mice results in seminal fluid metabolome and epididymal histopathological alterations. It remains to be determined whether such changes compromise male reproductive function or lead to DOHaD effects in resulting offspring.


Asunto(s)
Antibacterianos/farmacología , Epidídimo/efectos de los fármacos , Fluoroquinolonas/farmacología , Metaboloma/efectos de los fármacos , Semen/efectos de los fármacos , Ampicilina/farmacología , Animales , Enrofloxacina , Epidídimo/metabolismo , Masculino , Ratones , Semen/metabolismo , Sulbactam/farmacología , Testículo/efectos de los fármacos , Testículo/metabolismo
17.
Eur J Nutr ; 57(2): 723-730, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28004271

RESUMEN

PURPOSE: Maternal vitamin D deficiency during pregnancy is a widespread issue that may have long-lasting consequences on offspring adiposity. We sought to determine how maternal vitamin D deficiency during the perinatal period would affect offspring adipose tissue development and gene expression. METHODS: Female C57BL/6 J mice were fed either a vitamin D deficient (VDD) or control diet from 4 weeks before pregnancy (periconception) until 7 days postparturition. Male offspring were weighed and euthanized at 75 days of age (early adult period), at which point serum was collected for biochemical analyses, and perigonadal and subcutaneous white adipose tissue (PGAT and SQAT, respectively) were excised, weighed, then flash-frozen for later histology and analyses of adipogenic gene expression. RESULTS: All adult male offspring were nonobese; there were no significant differences in body weight, adipose pad weight, or adipocyte size. However, VDD-exposed offspring had greater expression of the adipogenic-regulating genes peroxisome proliferator-activated receptor gamma (Pparg) and vitamin D receptor (Vdr). CONCLUSIONS: This study suggests that exposure to vitamin D deficiency during the perinatal period can directly affect genes involved in the development of adipose tissue in nonobese offspring. These novel findings invite further investigation into the mechanisms by which maternal vitamin D status during pregnancy affects adipose development and metabolic health of offspring.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Regulación del Desarrollo de la Expresión Génica , Fenómenos Fisiologicos Nutricionales Maternos , PPAR gamma/metabolismo , Paniculitis/etiología , Receptores de Calcitriol/metabolismo , Deficiencia de Vitamina D/fisiopatología , Adipoquinas/sangre , Adipoquinas/metabolismo , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/patología , Adiposidad , Animales , Tamaño de la Célula , Femenino , Desarrollo Fetal , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Lactancia , Masculino , Ratones Endogámicos C57BL , PPAR gamma/genética , Paniculitis/inmunología , Paniculitis/metabolismo , Paniculitis/patología , Proyectos Piloto , Embarazo , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal , Distribución Aleatoria , Receptores de Calcitriol/genética
18.
Physiol Genomics ; 49(4): 201-215, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159858

RESUMEN

Developmental exposure of turtles and other reptiles to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE), can stimulate partial to full gonadal sex-reversal in males. We have also recently shown that in ovo exposure to either EDC can induce similar sex-dependent behavioral changes typified by improved spatial learning and memory or possibly feminized brain responses. Observed behavioral changes are presumed to be due to BPA- and EE-induced brain transcriptomic alterations during development. To test this hypothesis, we treated painted turtles (Chrysemys picta) at developmental stage 17, incubated at 26°C (male-inducing temperature), with 1) BPA (1 ng/µl), 2) EE (4 ng/µl), or 3) vehicle ethanol (control group). Ten months after hatching and completion of the behavioral tests, juvenile turtles were euthanized, brains were collected and frozen in liquid nitrogen, and RNA was isolated for RNA-Seq analysis. Turtles exposed to BPA clustered separately from EE-exposed and control individuals. More transcripts and gene pathways were altered in BPA vs. EE individuals. The one transcript upregulated in both BPA- and EE-exposed individuals was the mitochondrial-associated gene, ND5, which is involved in oxidative phosphorylation. Early exposure of turtles to BPA increases transcripts linked with ribosomal and mitochondrial functions, especially bioenergetics, which has been previously linked with improved cognitive performance. In summary, even though both BPA and EE resulted in similar behavioral alterations, they diverge in the pattern of neural transcript alterations with early BPA significantly upregulating several genes involved in oxidative phosphorylation, mitochondrial activity, and ribosomal function, which could enhance cognitive performance.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Etinilestradiol/toxicidad , Fenoles/toxicidad , Transcriptoma/efectos de los fármacos , Tortugas/genética , Animales , Femenino , Masculino
19.
J Neurosci Res ; 95(1-2): 279-290, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27870424

RESUMEN

Numbers of overweight and obese individuals are increasing in the United States and globally, and, correspondingly, the associated health care costs are rising dramatically. More than one-third of children are currently considered obese with a predisposition to type 2 diabetes, and it is likely that their metabolic conditions will worsen with age. Physical inactivity has also risen to be the leading cause of many chronic, noncommunicable diseases (NCD). Children are more physically inactive now than they were in past decades, which may be due to intrinsic and extrinsic factors. In rodents, the amount of time engaged in spontaneous activity within the home cage is a strong predictor of later adiposity and weight gain. Thus, it is important to understand primary motivators stimulating physical activity (PA). There are normal sex differences in PA levels in rodents and humans. The perinatal environment can induce sex-dependent differences in PA disturbances. This Review considers the current evidence for sex differences in PA in rodents and humans. The rodent studies showing that early exposure to environmental chemicals can shape later adult PA responses are discussed. Next, whether there are different motivators stimulating exercise in male vs. female humans are examined. Finally, the brain regions, genes, and pathways that modulate PA in rodents, and possibly by translation in humans, are described. A better understanding of why each sex remains physically active through the life span could open new avenues for preventing and treating obesity in children and adults. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/fisiología , Ejercicio Físico/fisiología , Caracteres Sexuales , Animales , Humanos , Motivación/fisiología
20.
Artículo en Inglés | MEDLINE | ID: mdl-28895797

RESUMEN

In vertebrates, sexual differentiation of the reproductive system and brain is tightly orchestrated by organizational and activational effects of endogenous hormones. In mammals and birds, the organizational period is typified by a surge of sex hormones during differentiation of specific neural circuits; whereas activational effects are dependent upon later increases in these same hormones at sexual maturation. Depending on the reproductive organ or brain region, initial programming events may be modulated by androgens or require conversion of androgens to estrogens. The prevailing notion based upon findings in mammalian models is that male brain is sculpted to undergo masculinization and defeminization. In absence of these responses, the female brain develops. While timing of organizational and activational events vary across taxa, there are shared features. Further, exposure of different animal models to environmental chemicals such as xenoestrogens such as bisphenol A-BPA and ethinylestradiol-EE2, gestagens, and thyroid hormone disruptors, broadly classified as neuroendocrine disrupting chemicals (NED), during these critical periods may result in similar alterations in brain structure, function, and consequently, behaviors. Organizational effects of neuroendocrine systems in mammals and birds appear to be permanent, whereas teleost fish neuroendocrine systems exhibit plasticity. While there are fewer NED studies in amphibians and reptiles, data suggest that NED disrupt normal organizational-activational effects of endogenous hormones, although it remains to be determined if these disturbances are reversible. The aim of this review is to examine how various environmental chemicals may interrupt normal organizational and activational events in poikilothermic vertebrates. By altering such processes, these chemicals may affect reproductive health of an animal and result in compromised populations and ecosystem-level effects.


Asunto(s)
Disruptores Endocrinos/efectos adversos , Hormonas Esteroides Gonadales/fisiología , Vertebrados/crecimiento & desarrollo , Anfibios/embriología , Anfibios/crecimiento & desarrollo , Anfibios/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Femenino , Peces/embriología , Peces/crecimiento & desarrollo , Peces/fisiología , Hormonas Esteroides Gonadales/antagonistas & inhibidores , Gónadas/efectos de los fármacos , Gónadas/embriología , Gónadas/crecimiento & desarrollo , Gónadas/fisiología , Masculino , Sistemas Neurosecretores/efectos de los fármacos , Sistemas Neurosecretores/embriología , Sistemas Neurosecretores/crecimiento & desarrollo , Neurotransmisores/antagonistas & inhibidores , Neurotransmisores/fisiología , Reptiles/embriología , Reptiles/crecimiento & desarrollo , Reptiles/fisiología , Procesos de Determinación del Sexo/efectos de los fármacos , Procesos de Determinación del Sexo/fisiología , Vertebrados/embriología , Vertebrados/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA