Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(4): e2309006120, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190516

RESUMEN

Improving water use efficiency in crops is a significant challenge as it involves balancing water transpiration and CO2 uptake through stomatal pores. This study investigates the role of SlROP9, a tomato Rho of Plants protein, in guard cells and its impact on plant transpiration. The results reveal that SlROP9 null mutants exhibit reduced stomatal conductance while photosynthetic CO2 assimilation remains largely unaffected. Notably, there is a notable decrease in whole-plant transpiration in the rop9 mutants compared to the wild type, especially during noon hours when the water pressure deficit is high. The elevated stomatal closure observed in rop9 mutants is linked to an increase in reactive oxygen species formation. This is very likely dependent on the respiratory burst oxidase homolog (RBOH) NADPH oxidase and is not influenced by abscisic acid (ABA). Consistently, activated ROP9 can interact with RBOHB in both yeast and plants. In diverse tomato accessions, drought stress represses ROP9 expression, and in Arabidopsis stomatal guard cells, ABA suppresses ROP signaling. Therefore, the phenotype of the rop9 mutants may arise from a disruption in ROP9-regulated RBOH activity. Remarkably, large-scale field experiments demonstrate that the rop9 mutants display improved water use efficiency without compromising fruit yield. These findings provide insights into the role of ROPs in guard cells and their potential as targets for enhancing water use efficiency in crops.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Productos Agrícolas , Proteínas de Plantas/genética , Ácido Abscísico , Arabidopsis/genética
2.
Plant J ; 118(3): 626-644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241088

RESUMEN

Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.


Asunto(s)
Adaptación Fisiológica , Productos Agrícolas , Sequías , Metaboloma , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Estrés Fisiológico
3.
Plant Physiol ; 193(1): 611-626, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37313772

RESUMEN

Seeds are an essential food source, providing nutrients for germination and early seedling growth. Degradation events in the seed and the mother plant accompany seed development, including autophagy, which facilitates cellular component breakdown in the lytic organelle. Autophagy influences various aspects of plant physiology, specifically nutrient availability and remobilization, suggesting its involvement in source-sink interactions. During seed development, autophagy affects nutrient remobilization from mother plants and functions in the embryo. However, it is impossible to distinguish between the contribution of autophagy in the source (i.e. the mother plant) and the sink tissue (i.e. the embryo) when using autophagy knockout (atg mutant) plants. To address this, we employed an approach to differentiate between autophagy in source and sink tissues. We investigated how autophagy in the maternal tissue affects seed development by performing reciprocal crosses between wild type and atg mutant Arabidopsis (Arabidopsis thaliana) plants. Although F1 seedlings possessed a functional autophagy mechanism, etiolated F1 plants from maternal atg mutants displayed reduced growth. This was attributed to altered protein but not lipid accumulation in the seeds, suggesting autophagy differentially regulates carbon and nitrogen remobilization. Surprisingly, F1 seeds of maternal atg mutants exhibited faster germination, resulting from altered seed coat development. Our study emphasizes the importance of examining autophagy in a tissue-specific manner, revealing valuable insights into the interplay between different tissues during seed development. It also sheds light on the tissue-specific functions of autophagy, offering potential for research into the underlying mechanisms governing seed development and crop yield.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/metabolismo , Plantas/metabolismo , Germinación/genética , Plantones/genética , Plantones/metabolismo , Autofagia/genética , Regulación de la Expresión Génica de las Plantas
4.
Plant Cell Physiol ; 63(12): 2008-2026, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36161338

RESUMEN

Changes in climate conditions can negatively affect the productivity of crop plants. They can induce chloroplast degradation (senescence), which leads to decreased source capacity, as well as decreased whole-plant carbon/nitrogen assimilation and allocation. The importance, contribution and mechanisms of action regulating source-tissue capacity under stress conditions in tomato (Solanum lycopersicum) are not well understood. We hypothesized that delaying chloroplast degradation by altering the activity of the tomato chloroplast vesiculation (CV) under stress would lead to more efficient use of carbon and nitrogen and to higher yields. Tomato CV is upregulated under stress conditions. Specific induction of CV in leaves at the fruit development stage resulted in stress-induced senescence and negatively affected fruit yield, without any positive effects on fruit quality. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/CAS9) knockout CV plants, generated using a near-isogenic tomato line with enhanced sink capacity, exhibited stress tolerance at both the vegetative and the reproductive stages, leading to enhanced fruit quantity, quality and harvest index. Detailed metabolic and transcriptomic network analysis of sink tissue revealed that the l-glutamine and l-arginine biosynthesis pathways are associated with stress-response conditions and also identified putative novel genes involved in tomato fruit quality under stress. Our results are the first to demonstrate the feasibility of delayed stress-induced senescence as a stress-tolerance trait in a fleshy fruit crop, to highlight the involvement of the CV pathway in the regulation of source strength under stress and to identify genes and metabolic pathways involved in increased tomato sink capacity under stress conditions.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Cloroplastos/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo
5.
Plant Cell Environ ; 46(4): 1278-1294, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35698268

RESUMEN

Glycerolipids are essential for rice development and grain quality but its genetic regulation remains unknown. Here we report its genetic base using metabolite-based genome-wide association study and metabolite-based quantitative traits locus (QTL) analyses based on lipidomic profiles of seeds from 587 Asian cultivated rice accessions and 103 chromosomal segment substitution lines, respectively. We found that two genes encoding phosphatidylcholine (PC):diacylglycerol cholinephosphotransferase (OsLP1) and granule-bound starch synthase I (Waxy) contribute to variations in saturated triacylglycerol (TAG) and lyso-PC contents, respectively. We demonstrated that allelic variation in OsLP1 sequence between indica and japonica results in different enzymatic preference for substrate PC-16:0/16:0 and different saturated TAG levels. Further evidence demonstrated that OsLP1 also affects heading date, and that co-selection of OsLP1 and a flooding-tolerant QTL in Aus results in the abundance of saturated TAGs associated with flooding tolerance. Moreover, we revealed that the sequence polymorphisms in Waxy has pleiotropic effects on lyso-PC and amylose content. We proposed that rice seed glycerolipids have been unintentionally shaped during natural and artificial selection for adaptive or import seed quality traits. Collectively, our findings provide valuable genetic resources for rice improvement and evolutionary insights into seed glycerolipid variations in rice.


Asunto(s)
Oryza , Oryza/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Fenotipo , Semillas/genética
6.
Plant Physiol ; 185(4): 1542-1558, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793926

RESUMEN

Autophagy is an evolutionarily conserved mechanism that mediates the degradation of cytoplasmic components in eukaryotic cells. In plants, autophagy has been extensively associated with the recycling of proteins during carbon-starvation conditions. Even though lipids constitute a significant energy reserve, our understanding of the function of autophagy in the management of cell lipid reserves and components remains fragmented. To further investigate the significance of autophagy in lipid metabolism, we performed an extensive lipidomic characterization of Arabidopsis (Arabidopsis thaliana) autophagy mutants (atg) subjected to dark-induced senescence conditions. Our results revealed an altered lipid profile in atg mutants, suggesting that autophagy affects the homeostasis of multiple lipid components under dark-induced senescence. The acute degradation of chloroplast lipids coupled with the differential accumulation of triacylglycerols (TAGs) and plastoglobuli indicates an alternative metabolic reprogramming toward lipid storage in atg mutants. The imbalance of lipid metabolism compromises the production of cytosolic lipid droplets and the regulation of peroxisomal lipid oxidation pathways in atg mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia/fisiología , Cloroplastos/metabolismo , Oscuridad , Homeostasis/fisiología , Metabolismo de los Lípidos/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Variación Genética , Genotipo , Homeostasis/genética , Metabolismo de los Lípidos/genética , Mutación
7.
Theor Appl Genet ; 134(10): 3319-3337, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34196730

RESUMEN

KEY MESSAGE: Photoperiod and temperature conditions elicit different genetic regulation over lettuce bolting and flowering. This study identifies environment-specific QTLs and putative genes and provides information for genetic marker assay. Bolting, defined as stem elongation, marks the plant life cycle transition from vegetative to reproductive stage. Lettuce is grown for its leaf rosettes, and premature bolting may reduce crop quality resulting in economic losses. The transition to reproductive stage is a complex process that involves many genetic and environmental factors. In this study, the effects of photoperiod and ambient temperature on bolting and flowering regulation were studied by utilizing a lettuce mapping population to identify quantitative trait loci (QTL) and by gene expression analyses of genotypes with contrasting phenotypes. A recombinant inbred line (RIL) population, derived from a cross between PI 251246 (early bolting) and cv. Salinas (late bolting), was grown in four combinations of short (8 h) and long (16 h) days and low (20 °C) and high (35 °C) temperature. QTL models revealed both genetic (G) and environmental (E) effects, and GxE interactions. A major QTL for bolting and flowering time was found on chromosome 7 (qFLT7.2), and two candidate genes were identified by fine mapping, homology, and gene expression studies. In short days and high temperature conditions, qFLT7.2 had no effect on plant development, while several small-effect loci on chromosomes 2, 3, 6, 8, and 9 were associated with bolting and flowering. Of these, the QTL on chromosome 2, qBFr2.1, co-located with the Flowering Locus T (LsFT) gene. Polymorphisms between parent genotypes in the promotor region may explain identified gene expression differences and were used to design a genetic marker which may be used to identify the late bolting trait.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Lactuca/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Flores/genética , Lactuca/genética , Fenotipo , Fotoperiodo , Proteínas de Plantas/genética
8.
BMC Genomics ; 17(1): 1047, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27993127

RESUMEN

BACKGROUND: The metabolite content of a seed and its ability to germinate are determined by genetic makeup and environmental effects during development. The interaction between genetics, environment and seed metabolism and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass spectrometry (GC-MS) metabolic profiling and germination tests. RESULTS: Seed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids, while positive correlations were found for several organic acids and the N metabolites urea and dopamine. Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity, which were also characterized by defined metabolic changes in the seed. CONCLUSIONS: An integrative analysis of the metabolite and germination data revealed metabolite levels unambiguously associated with germination percentage and rate, mostly conserved in the different tested seed development environments. Such consistent relations suggest the potential for developing a method of germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of primary metabolic processes in germination.


Asunto(s)
Metabolismo Energético , Ambiente , Interacción Gen-Ambiente , Germinación/genética , Semillas/genética , Semillas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Estudios de Asociación Genética , Genética de Población , Fenotipo , Carácter Cuantitativo Heredable , Salinidad
9.
PLoS Genet ; 8(3): e1002612, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479206

RESUMEN

To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping.


Asunto(s)
Frutas , Metaboloma/genética , Sitios de Carácter Cuantitativo , Semillas/metabolismo , Solanum lycopersicum , Aminoácidos/genética , Aminoácidos/metabolismo , Mapeo Cromosómico , Ambiente , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genética de Población , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Redes y Vías Metabólicas , Sitios de Carácter Cuantitativo/genética , Semillas/genética
10.
aBIOTECH ; 4(3): 224-237, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37970465

RESUMEN

Arabidopsis sepals coordinate flower opening in the morning as ambient temperature rises; however, the underlying molecular mechanisms are poorly understood. Mutation of one heat shock protein encoding gene, HSP70-16, impaired sepal heat stress responses (HSR), disrupting lipid metabolism, especially sepal cuticular lipids, leading to abnormal flower opening. To further explore, to what extent, lipids play roles in this process, in this study, we compared lipidomic changes in sepals of hsp70-16 and vdac3 (mutant of a voltage-dependent anion channel, VDAC3, an HSP70-16 interactor) grown under both normal (22 °C) and mild heat stress (27 °C, mild HS) temperatures. Under normal temperature, neither hsp70-16 nor vdac3 sepals showed significant changes in total lipids; however, vdac3 but not hsp70-16 sepals exhibited significant reductions in the ratios of all detected 11 lipid classes, except the monogalactosyldiacylglycerols (MGDGs). Under mild HS temperature, hsp70-16 but not vdac3 sepals showed dramatic reduction in total lipids. In addition, vdac3 sepals exhibited a significant accumulation of plastidic lipids, especially sulfoquinovosyldiacylglycerols (SQDGs) and phosphatidylglycerols (PGs), whereas hsp70-16 sepals had a significant accumulation of triacylglycerols (TAGs) and simultaneous dramatic reductions in SQDGs and phospholipids (PLs), such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and phosphatidylserines (PSs). These findings revealed that the impact of mild HS on sepal lipidome is influenced by genetic factors, and further, that HSP70-16 and VDAC3 differently affect sepal lipidomic responses to mild HS. Our studies provide a lipidomic insight into functions of HSP and VDAC proteins in the plant's HSR, in the context of floral development. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00103-x.

11.
Curr Protoc Plant Biol ; 5(2): e20109, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32343495

RESUMEN

Lipids are fascinating due to their chemical diversity, which is especially vast in the plant kingdom thanks to the high plasticity of the plant biosynthetic machinery. Lipidomic studies aim to simultaneously analyze a large number of lipid compounds of diverse classes in a given sample. The method presented here uses liquid chromatography-mass spectrometry (LC-MS)-based lipidomic profiling in a relatively fast, robust, and high-throughput manner for high-coverage quantification and annotation of lipophilic compounds. Protocols cover sample preparation, LC-MS-based measurement, and data extraction and annotation. An extensive lipid library for triacylglycerols, galactolipids, and phospholipids is provided. The extended profiling described here could be used in a range of applications and is suitable for integration with other omic datasets. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Sample preparation and metabolite extraction Basic Protocol 2: Liquid chromatography-mass spectrometry (LC-MS) analysis Basic Protocol 3: Data extraction, annotation, and quantification.


Asunto(s)
Lípidos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Plantas , Triglicéridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA