Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Haematologica ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813718

RESUMEN

Mucosal-associated invariant T (MAIT) cells are innate-like T-cells implicated in the response to fungal and bacterial infections. Their contribution to restoring T-cell immunity and influencing hematopoietic stem cell transplant (HSCT) outcomes remains poorly understood. We retrospectively studied MAIT-cell recovery in 145 consecutive children and young adults with hematological malignancies undergoing allo-HSCT, between April/2019 and May/2022, from unrelated matched donor (MUD, n=52), with standard graft-versus-host-disease (GvHD) prophylaxis, or HLA-haploidentical (Haplo, n=93) donor after in vitro αßT/CD19-cell depletion, without post-HSCT pharmacological prophylaxis. With a median follow-up of 33 months (12-49), overall survival (OS), disease-free survival (DFS) and non-relapse mortality (NRM) were 79.5%, 72% and 7%, respectively; GvHD-free, Relapse-free Survival (GRFS) was 63%, while cumulative incidence of relapse was 23%. While WWT-cells reconstituted 1-2 years post-HSCT, MAIT-cells showed delayed recovery and prolonged functional impairment, characterized by expression of activation (CD25, CD38), exhaustion (PD1, TIM3) and senescence (CD57) markers, and suboptimal ex vivo response. OS, DFS and NRM were not affected by MAIT-cells. Interestingly, higher MAIT-cells at day+30 correlated with higher incidence of grade II-IV acute GvHD (19% vs 7%, p=0.06). Furthermore, a greater MAIT-cell count tended to be associated with a higher incidence of chronic GvHD (17% vs 6%, p=0.07) resulting in lower GRFS (55% vs 73%, p=0.05). Higher MAIT-cells also correlated with greater cytomegalovirus (CMV) reactivation and lower late blood stream infections (BSI) (44% vs 24%, p=0.02 and 9% vs 18%, p=0.08, respectively). Future studies are needed to confirm the impact of early MAIT-cell recovery on cGvHD, CMV reactivation and late BSI.

2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338689

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.


Asunto(s)
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Timo/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Leucemia de Células T/metabolismo , Apoptosis , Proliferación Celular , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA