Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO Rep ; 23(10): e54136, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35912982

RESUMEN

N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.


Asunto(s)
Reparación del ADN , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Aminopeptidasas , ADN , Daño del ADN , Dipéptidos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Prolina , Recombinasa Rad51/genética , Serina
2.
Angew Chem Int Ed Engl ; 61(47): e202210498, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36089535

RESUMEN

Dipeptidyl peptidases 8 and 9 (DPP8/9) have gathered interest as drug targets due to their important roles in biological processes like immunity and tumorigenesis. Elucidation of their distinct individual functions remains an ongoing task and could benefit from the availability of novel, chemically diverse and selective chemical tools. Here, we report the activity-based protein profiling (ABPP)-mediated discovery of 4-oxo-ß-lactams as potent, non-substrate-like nanomolar DPP8/9 inhibitors. X-ray crystallographic structures revealed different ligand binding modes for DPP8 and DPP9, including an unprecedented targeting of an extended S2' (eS2') subsite in DPP8. Biological assays confirmed inhibition at both target and cellular levels. Altogether, our integrated chemical proteomics and structure-guided small molecule design approach led to novel DPP8/9 inhibitors with alternative molecular inhibition mechanisms, delivering the highest selectivity index reported to date.


Asunto(s)
Dipeptidasas , Dipeptidasas/metabolismo , beta-Lactamas/farmacología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Proteómica , Cristalografía por Rayos X
3.
Proc Natl Acad Sci U S A ; 115(7): E1437-E1445, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382749

RESUMEN

Dipeptidyl peptidases 8 and 9 are intracellular N-terminal dipeptidyl peptidases (preferentially postproline) associated with pathophysiological roles in immune response and cancer biology. While the DPP family member DPP4 is extensively characterized in molecular terms as a validated therapeutic target of type II diabetes, experimental 3D structures and ligand-/substrate-binding modes of DPP8 and DPP9 have not been reported. In this study we describe crystal and molecular structures of human DPP8 (2.5 Å) and DPP9 (3.0 Å) unliganded and complexed with a noncanonical substrate and a small molecule inhibitor, respectively. Similar to DPP4, DPP8 and DPP9 molecules consist of one ß-propeller and α/ß hydrolase domain, forming a functional homodimer. However, they differ extensively in the ligand binding site structure. In intriguing contrast to DPP4, where liganded and unliganded forms are closely similar, ligand binding to DPP8/9 induces an extensive rearrangement at the active site through a disorder-order transition of a 26-residue loop segment, which partially folds into an α-helix (R-helix), including R160/133, a key residue for substrate binding. As vestiges of this helix are also seen in one of the copies of the unliganded form, conformational selection may contributes to ligand binding. Molecular dynamics simulations support increased flexibility of the R-helix in the unliganded state. Consistently, enzyme kinetics assays reveal a cooperative allosteric mechanism. DPP8 and DPP9 are closely similar and display few opportunities for targeted ligand design. However, extensive differences from DPP4 provide multiple cues for specific inhibitor design and development of the DPP family members as therapeutic targets or antitargets.


Asunto(s)
Dipeptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Homeostasis/fisiología , Conformación Proteica , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Dipeptidasas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Humanos , Estructura Molecular , Dominios Proteicos
4.
J Appl Crystallogr ; 54(Pt 3): 895-902, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34188616

RESUMEN

Soaking of macromolecular crystals allows the formation of complexes via diffusion of molecules into a preformed crystal for structural analysis. Soaking offers various advantages over co-crystallization, e.g. small samples and high-throughput experimentation. However, this method has disadvantages, such as inducing mechanical stress on crystals and reduced success rate caused by low affinity/solubility of the ligand. To bypass these issues, the Picodropper was previously developed in the authors' laboratory. This technique aimed to deliver small volumes of compound solution in response to crystal dehydration supported by the Free Mounting System humidity control or by IR-laser-induced protein crystal transformation. Herein, a new related soaking development, the Aerosol-Generator, is introduced. This device delivers compounds onto the solution-free surface of protein crystals using an ultrasonic technique. The produced aerosol stream enables an easier and more accurate control of solution volumes, reduced crystal handling, and crystal-size-independent soaking. The Aerosol-Generator has been used to produce complexes of DPP8 crystals, where otherwise regular soaking did not achieve complex formation. These results demonstrate the potential of this device in challenging ligand-binding scenarios and contribute to further understanding of DPP8 inhibitor binding.

5.
IUCrJ ; 6(Pt 4): 714-728, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316815

RESUMEN

Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, 'naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.

6.
PLoS One ; 11(4): e0154719, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27123979

RESUMEN

Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Animales , Línea Celular Tumoral , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/biosíntesis , Femenino , Células HeLa , Humanos , Células MCF-7 , Ratones , Trasplante de Neoplasias , Fosfatos de Fosfatidilinositol/metabolismo , Ratas , Trasplante Heterólogo , Red trans-Golgi/metabolismo
7.
PLoS Negl Trop Dis ; 10(7): e0004799, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27414047

RESUMEN

Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.


Asunto(s)
Glicoproteínas/metabolismo , Infecciones por Hantavirus/virología , Orthohantavirus/fisiología , Péptidos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Glicoproteínas/química , Glicoproteínas/genética , Orthohantavirus/química , Orthohantavirus/genética , Humanos , Péptidos/química , Péptidos/genética , Dominios Proteicos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo
8.
PLoS One ; 9(2): e88147, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498434

RESUMEN

Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (µ1-µ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in µ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the µ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of µ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type µ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered µ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of µ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of µ4.


Asunto(s)
Complejo 4 de Proteína Adaptadora/química , Complejo 4 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/química , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Complejo 4 de Proteína Adaptadora/genética , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Sitios de Unión , Neoplasias de la Mama/metabolismo , Calorimetría , Cristalografía por Rayos X , Femenino , Fluorometría , Glioma/metabolismo , Humanos , Microscopía Fluorescente , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Reacción en Cadena de la Polimerasa , Conformación Proteica , Homología de Secuencia de Aminoácido , Células Tumorales Cultivadas , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA