Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7980): 804-812, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37730988

RESUMEN

Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC1 (CTSK+ CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2+ CSC) that we identified in this study. Deletion of Twist1, a gene associated with craniosynostosis in humans2,3, solely in CTSK+ CSCs is sufficient to drive craniosynostosis in mice, but the sites that are destined to fuse exhibit an unexpected depletion of CTSK+ CSCs and a corresponding expansion of DDR2+ CSCs, with DDR2+ CSC expansion being a direct maladaptive response to CTSK+ CSC depletion. DDR2+ CSCs display full stemness features, and our results establish the presence of two distinct stem cell lineages in the sutures, with both populations contributing to physiologic calvarial mineralization. DDR2+ CSCs mediate a distinct form of endochondral ossification without the typical haematopoietic marrow formation. Implantation of DDR2+ CSCs into suture sites is sufficient to induce fusion, and this phenotype was prevented by co-transplantation of CTSK+ CSCs. Finally, the human counterparts of DDR2+ CSCs and CTSK+ CSCs display conserved functional properties in xenograft assays. The interaction between these two stem cell populations provides a new biologic interface for the modulation of calvarial mineralization and suture patency.


Asunto(s)
Craneosinostosis , Humanos , Ratones , Animales , Craneosinostosis/genética , Osteogénesis , Linaje de la Célula , Fenotipo , Células Madre
2.
EMBO Rep ; 25(5): 2202-2219, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600346

RESUMEN

Neural progenitor cells within the cerebral cortex undergo a characteristic switch between symmetric self-renewing cell divisions early in development and asymmetric neurogenic divisions later. Yet, the mechanisms controlling this transition remain unclear. Previous work has shown that early but not late neural progenitor cells (NPCs) endogenously express the autism-linked transcription factor Foxp1, and both loss and gain of Foxp1 function can alter NPC activity and fate choices. Here, we show that premature loss of Foxp1 upregulates transcriptional programs regulating angiogenesis, glycolysis, and cellular responses to hypoxia. These changes coincide with a premature destabilization of HIF-1α, an elevation in HIF-1α target genes, including Vegfa in NPCs, and precocious vascular network development. In vitro experiments demonstrate that stabilization of HIF-1α in Foxp1-deficient NPCs rescues the premature differentiation phenotype and restores NPC maintenance. Our data indicate that the endogenous decline in Foxp1 expression activates the HIF-1α transcriptional program leading to changes in the tissue environment adjacent to NPCs, which, in turn, might alter their self-renewal and neurogenic capacities.


Asunto(s)
Corteza Cerebral , Factores de Transcripción Forkhead , Subunidad alfa del Factor 1 Inducible por Hipoxia , Células-Madre Neurales , Proteínas Represoras , Transducción de Señal , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Animales , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Neovascularización Fisiológica/genética , Diferenciación Celular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Neurogénesis/genética , Glucólisis , Angiogénesis
3.
Genes Dev ; 32(11-12): 763-780, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899142

RESUMEN

Proper organization and orderly mitosis of radial glial progenitors (RGPs) drive the formation of a laminated mammalian cortex in the correct size. However, the molecular underpinnings of the intricate process remain largely unclear. Here we show that RGP behavior and cortical development are controlled by temporally distinct actions of partitioning-defective 3 (PARD3) in concert with dynamic HIPPO signaling. RGPs lacking PARD3 exhibit developmental stage-dependent abnormal switches in division mode, resulting in an initial overproduction of RGPs located largely outside the ventricular zone at the expense of deep-layer neurons. Ectopically localized RGPs subsequently undergo accelerated and excessive neurogenesis, leading to the formation of an enlarged cortex with massive heterotopia and increased seizure susceptibility. Simultaneous removal of HIPPO pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) suppresses cortical enlargement and heterotopia formation. These results define a dynamic regulatory program of mammalian cortical development and highlight a progenitor origin of megalencephaly with ribbon heterotopia and epilepsy.


Asunto(s)
Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Corteza Cerebral/fisiopatología , Convulsiones/genética , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Corteza Cerebral/fisiología , Células Ependimogliales/fisiología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Convulsiones/fisiopatología , Transducción de Señal/genética , Células Madre/fisiología , Transactivadores , Proteínas Señalizadoras YAP
4.
Am J Med Genet A ; : e63790, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922739

RESUMEN

A 7-month-old boy presented to our clinic with developmental delay, Magnetic Resonance Imaging (MRI) features of delayed myelination and diffusion restriction, and a homozygous variant of uncertain significance (c.4T>G, p.Phe2Val) in HIKESHI, a gene associated with autosomal-recessive hypomyelinating leukodystrophy 13. We hypothesized that the variant is disease-causing and aimed to rescue the cellular phenotype with vector-mediated gene replacement. HIKESHI mediates heat-induced nuclear accumulation of heat-shock proteins, including HSP70, to protect cells from stress. We generated skin fibroblasts from the proband and proband's mother (heterozygous) to compare protein expression and subcellular localization of HSP70 under heat stress conditions, and the effect of vector-mediated overexpression of HIKESHI in the proband's cells under the same heat stress conditions. Western blot analysis revealed absent HIKESHI protein from proband fibroblasts, contrasted with ample expression in parental cells. Under heat stress conditions, while the mother's cells displayed appropriate nuclear localization of HSP70, the proband's cells displayed impaired nuclear translocalization. When patient fibroblasts were provided exogenous HIKESHI, the transfected proband's cells showed restored heat-induced nuclear translocalization of HSP70 under conditions of heat stress. These functional data establish that the patient's variant is a pathogenic loss-of-function mutation, thus confirming a diagnosis of hypomyelinating leukodystrophy 13 and that vector-mediated gene replacement may be an effective treatment approach for patients with this disorder.

5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34916285

RESUMEN

Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery. Thus, SB genetic studies may suffer from population substructure and/or selection bias introduced by typical candidate gene searches. We report a population based, ancestry-matched whole-genome sequence analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), rare protein-coding variants were subjected to machine learning analysis to identify genes in which LGD variants occur with a different frequency in cases versus controls and so discriminate between these groups. Those genes with high discriminatory potential for SB significantly enriched pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation, and essential transcriptional regulation consistent with their having impact on the pathogenesis of human SB. Additionally, an interrogation of conserved noncoding sequences identified robust variant enrichment in regulatory regions of several transcription factors critical to embryonic development. This genome-wide perspective offers an effective approach to the interrogation of coding and noncoding sequence variant contributions to rare complex genetic disorders.


Asunto(s)
Genoma Humano , Disrafia Espinal/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Biología de Sistemas , Factores de Transcripción/genética
6.
Mol Psychiatry ; 27(5): 2470-2484, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35365802

RESUMEN

The cellular mechanisms of autism spectrum disorder (ASD) are poorly understood. Cumulative evidence suggests that abnormal synapse function underlies many features of this disease. Astrocytes regulate several key neuronal processes, including the formation of synapses and the modulation of synaptic plasticity. Astrocyte abnormalities have also been identified in the postmortem brain tissue of ASD individuals. However, it remains unclear whether astrocyte pathology plays a mechanistic role in ASD, as opposed to a compensatory response. To address this, we combined stem cell culturing with transplantation techniques to determine disease-specific properties inherent to ASD astrocytes. We demonstrate that ASD astrocytes induce repetitive behavior as well as impair memory and long-term potentiation when transplanted into the healthy mouse brain. These in vivo phenotypes were accompanied by reduced neuronal network activity and spine density caused by ASD astrocytes in hippocampal neurons in vitro. Transplanted ASD astrocytes also exhibit exaggerated Ca2+ fluctuations in chimeric brains. Genetic modulation of evoked Ca2+ responses in ASD astrocytes modulates behavior and neuronal activity deficits. Thus, this study determines that astrocytes derived from ASD iPSCs are sufficient to induce repetitive behavior as well as cognitive deficit, suggesting a previously unrecognized primary role for astrocytes in ASD.


Asunto(s)
Astrocitos , Trastorno del Espectro Autista , Animales , Astrocitos/fisiología , Trastorno del Espectro Autista/genética , Hipocampo/patología , Ratones , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología
7.
Hum Mutat ; 43(12): 2021-2032, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054333

RESUMEN

Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.


Asunto(s)
Defectos del Tubo Neural , Proteínas Represoras , Disrafia Espinal , Animales , Femenino , Humanos , Ratones , Embarazo , Receptor 1 de Folato/genética , Ácido Fólico , Mutación Missense , Defectos del Tubo Neural/genética , Células 3T3 NIH , Disrafia Espinal/genética , Células HeLa , Proteínas Represoras/genética
8.
J Neurooncol ; 157(2): 321-332, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35243591

RESUMEN

PURPOSE: Colloid cysts are rare, benign brain tumors of the third ventricle with an estimated population prevalence of 1 in 5800. Sudden deterioration and death secondary to obstructive hydrocephalus are well-described presentations in patients with a colloid cyst. Although historically conceptualized as driven by sporadic genetic events, a growing body of literature supports the possibility of an inherited predisposition. METHODS: A prospective registry of patients with colloid cysts was maintained between 1996 and 2021. Data pertaining to a family history of colloid cyst was collected retrospectively; self-reporting was validated in each case by medical record or imaging review. Frequency of patients with a documented first-degree family member with a colloid cyst based on self-reporting was calculated. The rate of familial co-occurrence within our series was then compared to a systematic literature review and aggregation of familial case studies, as well as population-based prevalence rates of sporadic colloid cysts. RESULTS: Thirteen cases with affected first-degree relatives were identified in our series. Of the entire cohort, 19/26 were symptomatic from the lesion (73%), 12/26 (46.2%) underwent resection, and 2/26 (7.7%) had sudden death from presumed obstructive hydrocephalus. The majority of transmission patterns were between mother and child (9/13). Compared with the estimated prevalence of colloid cysts, our FCC rate of 13 cases in 383 (3.4%) estimates a greater-than-chance rate of co-occurrence. CONCLUSION: Systematic screening for FCCs may facilitate early recognition and treatment of indolent cysts, thereby preventing the rapid deterioration that can occur with an unrecognized third ventricular tumor. Furthermore, identifying a transmission pattern may yield more insight into the molecular and genetic underpinnings of colloid cysts.


Asunto(s)
Quiste Coloide , Hidrocefalia , Tercer Ventrículo , Niño , Estudios de Cohortes , Quiste Coloide/epidemiología , Quiste Coloide/genética , Quiste Coloide/cirugía , Humanos , Hidrocefalia/complicaciones , Estudios Retrospectivos , Tercer Ventrículo/patología
9.
Hum Mol Genet ; 28(2): 200-208, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30256984

RESUMEN

Spina bifida (SB) is a complex disorder of failed neural tube closure during the first month of human gestation, with a suspected etiology involving multiple gene and environmental interactions. GPR161 is a ciliary G-protein coupled receptor that regulates Sonic Hedgehog (Shh) signaling. Gpr161 null and hypomorphic mutations cause neural tube defects (NTDs) in mouse models. Herein we show that several genes involved in Shh and Wnt signaling were differentially expressed in the Gpr161 null embryos using RNA-seq analysis. To determine whether there exists an association between GPR161 and SB in humans, we performed direct Sanger sequencing on the GPR161 gene in a cohort of 384 SB patients and 190 healthy controls. We identified six rare variants of GPR161 in six SB cases, of which two of the variants were novel and did not exist in any databases. Both of these variants were predicted to be damaging by SIFT and/or PolyPhen analysis. The novel GPR161 rare variants mislocalized to the primary cilia, dysregulated Shh and Wnt signaling and inhibited cell proliferation in vitro. Our results demonstrate that GPR161 mutations cause NTDs via dysregulation of Shh and Wnt signaling in mice, and novel rare variants of GPR161 can be risk factors for SB in humans.


Asunto(s)
Mutación , Receptores Acoplados a Proteínas G/genética , Disrafia Espinal/genética , Animales , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Genes Dominantes , Proteínas Hedgehog/metabolismo , Humanos , Recién Nacido , Ratones , Ratones Noqueados , Células 3T3 NIH , Defectos del Tubo Neural/genética , Fenotipo , Factores de Riesgo , Transducción de Señal , Disrafia Espinal/embriología , Proteínas Wnt/metabolismo
10.
Genet Med ; 23(7): 1211-1218, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33686259

RESUMEN

PURPOSE: Next-generation sequencing has implicated some risk variants for human spina bifida (SB), but the genome-wide contribution of structural variation to this complex genetic disorder remains largely unknown. We examined copy-number variant (CNV) participation in the genetic architecture underlying SB risk. METHODS: A high-confidence ensemble approach to genome sequences (GS) was benchmarked and employed for systematic detection of common and rare CNVs in two separate ancestry-matched SB case-control cohorts. RESULTS: SB cases were enriched with exon disruptive rare CNVs, 44% of which were under 10 kb, in both ancestral populations (P = 6.75 × 10-7; P = 7.59 × 10-4). Genes containing these disruptive CNVs fall into molecular pathways, supporting a role for these genes in SB. Our results expand the catalog of variants and genes with potential contribution to genetic and gene-environment interactions that interfere with neurulation, useful for further functional characterization. CONCLUSION: This study underscores the need for genome-wide investigation and extends our previous threshold model of exonic, single-nucleotide variation toward human SB risk to include structural variation. Since GS data afford detection of CNVs with greater resolution than microarray methods, our results have important implications toward a more comprehensive understanding of the genetic risk and mechanisms underlying neural tube defect pathogenesis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Disrafia Espinal , Estudios de Casos y Controles , Variaciones en el Número de Copia de ADN/genética , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple/genética , Disrafia Espinal/genética
12.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30817854

RESUMEN

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Uridina Difosfato Galactosa/metabolismo , Animales , Biopsia , Células CHO , Células Cultivadas , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Cricetulus , Femenino , Humanos , Masculino , Mutación
13.
Curr Opin Pediatr ; 31(6): 739-746, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31693581

RESUMEN

PURPOSE OF REVIEW: An update is presented regarding neural tube defects (NTDs) including spina bifida and anencephaly, which are among the most common serious birth defects world-wide. Decades of research suggest that no single factor is responsible for neurulation failure, but rather NTDs arise from a complex interplay of disrupted gene regulatory networks, environmental influences and epigenetic regulation. A comprehensive understanding of these dynamics is critical to advance NTD research and prevention. RECENT FINDINGS: Next-generation sequencing has ushered in a new era of genomic insight toward NTD pathophysiology, implicating novel gene associations with human NTD risk. Ongoing research is moving from a candidate gene approach toward genome-wide, systems-based investigations that are starting to uncover genetic and epigenetic complexities that underlie NTD manifestation. SUMMARY: Neural tube closure is critical for the formation of the human brain and spinal cord. Broader, more all-inclusive perspectives are emerging to identify the genetic determinants of human NTDs.


Asunto(s)
Defectos del Tubo Neural/genética , Disrafia Espinal/genética , Epigénesis Genética , Femenino , Humanos , Mutación/genética , Embarazo
14.
Genet Med ; 20(11): 1354-1364, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29671837

RESUMEN

PURPOSE: To estimate diagnostic yield and genotype-phenotype correlations in a cohort of 811 patients with lissencephaly or subcortical band heterotopia. METHODS: We collected DNA from 756 children with lissencephaly over 30 years. Many were tested for deletion 17p13.3 and mutations of LIS1, DCX, and ARX, but few other genes. Among those tested, 216 remained unsolved and were tested by a targeted panel of 17 genes (ACTB, ACTG1, ARX, CRADD, DCX, LIS1, TUBA1A, TUBA8, TUBB2B, TUBB, TUBB3, TUBG1, KIF2A, KIF5C, DYNC1H1, RELN, and VLDLR) or by whole-exome sequencing. Fifty-five patients studied at another institution were added as a validation cohort. RESULTS: The overall mutation frequency in the entire cohort was 81%. LIS1 accounted for 40% of patients, followed by DCX (23%), TUBA1A (5%), and DYNC1H1 (3%). Other genes accounted for 1% or less of patients. Nineteen percent remained unsolved, which suggests that several additional genes remain to be discovered. The majority of unsolved patients had posterior pachygyria, subcortical band heterotopia, or mild frontal pachygyria. CONCLUSION: The brain-imaging pattern correlates with mutations in single lissencephaly-associated genes, as well as in biological pathways. We propose the first LIS classification system based on the underlying molecular mechanisms.


Asunto(s)
Encéfalo/diagnóstico por imagen , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico , Secuenciación del Exoma , Lisencefalia/diagnóstico , Encéfalo/fisiopatología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico por imagen , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , Lisencefalia/fisiopatología , Masculino , Mutación/genética , Proteína Reelina
15.
Ann Neurol ; 81(1): 68-78, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27863452

RESUMEN

OBJECTIVE: Exome sequences account for only 2% of the genome and may overlook mutations causing disease. To obtain a more complete view, whole genome sequencing (WGS) was analyzed in a large consanguineous family in which members displayed autosomal recessively inherited cerebellar ataxia manifesting before 2 years of age. METHODS: WGS from blood-derived genomic DNA was used for homozygosity mapping and a rare variant search. RNA from isolated blood leukocytes was used for quantitative polymerase chain reaction (PCR), RNA sequencing, and comparison of the transcriptomes of affected and unaffected family members. RESULTS: WGS revealed a point mutation in noncoding RNA RNU12 that was associated with early onset cerebellar ataxia. The U12-dependent minor spliceosome edits 879 known transcripts. Reverse transcriptase PCR demonstrated minor intron retention in all of 9 randomly selected RNAs from this group, and RNAseq showed splicing disruption specific to all U12-type introns detected in blood monocytes from affected individuals. Moreover, 144 minor intron-containing RNAs were differentially expressed, including transcripts for 3 genes previously associated with cerebellar neurodegeneration. INTERPRETATION: Interference with particular spliceosome components, including small nuclear RNAs, cause reproducible uniquely distributed phenotypic and transcript-specific effects, making this an important category of disease-associated mutation. Our approach to differential expression analysis of minor intron-containing genes is applicable to other diseases involving altered transcriptome processing. ANN NEUROL 2017;81:68-78.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , ARN Nuclear Pequeño/genética , ARN no Traducido/genética , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Mutación Puntual , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN , Adulto Joven
16.
Hum Mutat ; 36(3): 342-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546815

RESUMEN

Several single-nucleotide variants (SNVs) in low-density lipoprotein receptor-related protein 6 (Lrp6) cause neural tube defects (NTDs) in mice. We therefore examined LRP6 in 192 unrelated infants from California with the NTD, spina bifida, and found four heterozygous missense SNVs, three of which were predicted to be deleterious, among NTD cases and not in 190 ethnically matched nonmalformed controls. Parents and siblings could not be tested because of the study design. Like Crooked tail and Ringleschwanz mouse variants, the p.Tyr544Cys Lrp6 protein failed to bind the chaperone protein mesoderm development and impaired Lrp6 subcellular localization to the plasma membrane of MDCK II cells. Only the p.Tyr544Cys Lrp6 variant downregulated canonical Wnt signaling in a TopFlash luciferase reporter in vitro assay. In contrast, three Lrp6 mutants (p.Ala3Val, p.Tyr544Cys, and p.Arg1574Leu) increased noncanonical Wnt/planar cell polarity (PCP) signaling in an Ap1-luciferase assay. Thus, LRP6 variants outside of YWTD repeats could potentially predispose embryos to NTDs, whereas Lrp6 modulation of Wnt/PCP signaling would be more essential than its canonical pathway role in neural tube closure.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Disrafia Espinal/genética , Animales , Línea Celular , Humanos , Lactante , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Vía de Señalización Wnt
17.
Hum Mol Genet ; 22(21): 4267-81, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23773994

RESUMEN

Low-density lipoprotein receptor related protein 6 (Lrp6) mutational effects on neurulation were examined using gain (Crooked tail, Lrp6(Cd)) and loss (Lrp6(-)) of function mouse lines. Two features often associated with canonical Wnt signaling, dorsal-ventral patterning and proliferation, were no different from wild-type (WT) in the Lrp6(Cd/Cd) neural tube. Lrp6(-/-) embryos showed reduced proliferation and subtle patterning changes in the neural folds. Cell polarity defects in both Lrp6(Cd/Cd) and Lrp6(-/-) cranial folds were indicated by cell shape, centrosome displacement and failure of F-actin and GTP-RhoA accumulation at the apical surface. Mouse embryonic fibroblasts (MEFs) derived from Lrp6(Cd/Cd) or Lrp6(-/-) embryos exhibited elevated and decreased RhoA basal activity levels, respectively. While ligand-independent activation of canonical Wnt signaling, bypassing Lrp-Frizzled receptors, did not activate RhoA, non-canonical Wnt5a stimulation of RhoA activity was impaired in Lrp6(-/-) MEFs. RhoA inhibition exacerbated NTDs in cultured Lrp6 knockout embryos compared with WT littermates. In contrast, a ROCK inhibitor rescued Lrp6(Cd/Cd) embryos from NTDs. Lrp6 co-immunoprecipitated with Disheveled-associated activator of morphogenesis 1 (DAAM1), a formin promoting GEF activity in Wnt signaling. Biochemical and cell biological data revealed intracellular accumulation of Lrp6(Cd) protein where interaction with DAAM1 could account for observed elevated RhoA activity. Conversely, null mutation that eliminates Lrp6 interaction with DAAM1 led to lower basal RhoA activity in Lrp6(-/-) embryos. These results indicate that Lrp6 mediates not only canonical Wnt signaling, but can also modulate non-canonical pathways involving RhoA-dependent mechanisms to impact neurulation, possibly through intracellular complexes with DAAM1.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/fisiología , Tubo Neural/embriología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Animales , Polaridad Celular , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Células 3T3 NIH , Cresta Neural/metabolismo , Tubo Neural/fisiología , Neurulación/genética , Embarazo , Proteínas Wnt/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Birth Defects Res A Clin Mol Teratol ; 100(8): 623-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25115437

RESUMEN

BACKGROUND: Neural tube closure defects (NTDs) are among the most common congenital malformation in human, typically presenting in liveborns as spina bifida. At least 240 gene mutations in mouse are known to increase the risk of NTD. There is a growing appreciation that environmental factors significantly contribute to NTD expression, and that NTDs likely arise from complex gene-environment interactions. Because maternal folic acid supplementation reduces human NTD risk in some populations by 60 to 70%, it is likely that NTD predisposition is often associated with a defect in folate-dependent one-carbon metabolism. A comprehensive, untargeted metabolic survey of NTD-associated changes in embryo metabolism would provide a valuable test of this assumption. We sought to establish a metabolic profiling platform that is capable of broadly assessing metabolic aberrations associated with NTD-promoting gene mutations in early-stage mouse embryos. METHODS: A liquid chromatography/mass spectrometry-based untargeted metabolite profiling platform was used to broadly identify significant differences in small molecule levels (50-1000 Da) in NTD-affected embryonic day (E) 9.5 mouse embryos (Lrp6(-) (/) (-) ) versus unaffected (Lrp6(+/+) ) control embryos. RESULTS: Results provide proof-of-principal feasibility for the broad survey of the metabolome of individual E9.5 mouse embryos and identification of metabolic changes associated with NTDs and gene mutations. Levels of 30 different metabolites were altered in association with Lrp6 gene deletion. Some metabolites link to folate-dependent one-carbon transfer reactions, as anticipated, while others await structure elucidation and pathway integration. CONCLUSION: Whole-embryo metabolomics offers the potential to identify metabolic changes in genetically determined NTD-prone embryos.


Asunto(s)
Ácido Fólico/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Defectos del Tubo Neural/embriología , Tubo Neural/embriología , Disrafia Espinal/embriología , Animales , Modelos Animales de Enfermedad , Glutatión/metabolismo , Metaboloma/genética , Ratones , Ratones Noqueados , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Disrafia Espinal/genética
19.
Transl Psychiatry ; 14(1): 53, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263175

RESUMEN

Schizophrenia (SCZ) is a complex neurodevelopmental disorder characterized by the manifestation of psychiatric symptoms in early adulthood. While many research avenues into the origins of SCZ during brain development have been explored, the contribution of endothelial/vascular dysfunction to the disease remains largely elusive. To model the neuropathology of SCZ during early critical periods of brain development, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids and define cell-specific signatures of disease. Single-cell RNA sequencing revealed that while SCZ organoids were similar in their macromolecular diversity to organoids generated from healthy controls (CTRL), SCZ organoids exhibited a higher percentage of endothelial cells when normalized to total cell numbers. Additionally, when compared to CTRL, differential gene expression analysis revealed a significant enrichment in genes that function in vessel formation, vascular regulation, and inflammatory response in SCZ endothelial cells. In line with these findings, data from 23 donors demonstrated that PECAM1+ microvascular vessel-like structures were increased in length and number in SCZ organoids in comparison to CTRL organoids. Furthermore, we report that patient-derived endothelial cells displayed higher paracellular permeability, implicating elevated vascular activity. Collectively, our data identified altered gene expression patterns, vessel-like structural changes, and enhanced permeability of endothelial cells in patient-derived models of SCZ. Hence, brain microvascular cells could play a role in the etiology of SCZ by modulating the permeability of the developing blood brain barrier (BBB).


Asunto(s)
Esquizofrenia , Humanos , Adulto , Células Endoteliales , Angiogénesis , Organoides , Barrera Hematoencefálica
20.
Epigenomics ; 16(6): 419-426, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38410929

RESUMEN

Neural tube defects (NTDs) are the most common congenital anomalies of the CNS. It is widely appreciated that both genetic and environmental factors contribute to their etiology. The inability to ascribe clear genetic patterns of inheritance to various NTD phenotypes suggests it is possible that epigenetic mechanisms are involved in the etiology of NTDs. In this context, the contribution of DNA methylation as an underlying contributing factor to the etiology of NTDs has been extensively reviewed. Here, an updated accounting of the evidence linking post-translational histone modifications to these birth defects, relying heavily upon studies in humans, and the possible molecular implications inferred from reports based on cellular and animal models, are presented.


Asunto(s)
Histonas , Defectos del Tubo Neural , Animales , Humanos , Histonas/metabolismo , Código de Histonas , Defectos del Tubo Neural/genética , Epigénesis Genética , Metilación de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA