Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 55(6): 914-26, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26785044

RESUMEN

Synaptic adhesion molecules are key components in development of the brain, and in the formation of neuronal circuits, as they are central in the assembly and maturation of chemical synapses. Several families of neuronal adhesion molecules have been identified such as the neuronal cell adhesion molecules, neurexins and neuroligins, and in particular recently several leucine-rich repeat proteins, e.g., Netrin G-ligands, SLITRKs, and LRRTMs. The LRRTMs form a family of four proteins. They have been implicated in excitatory glutamatergic synapse function and were specifically characterized as ligands for neurexins in excitatory synapse formation and maintenance. In addition, LRRTM3 and LRRTM4 have been found to be ligands for heparan sulfate proteoglycans, including glypican. We report here the crystal structure of a thermostabilized mouse LRRTM2, with a Tm 30 °C higher than that of the wild-type protein. We localized the neurexin binding site to the concave surface based on protein engineering, sequence conservation, and prior information about the interaction of the ligand with neurexins, which allowed us to propose a tentative model for the LRRTM-neurexin interaction complex. We also determined affinities of the thermostabilized LRRTM2 and wild-type LRRTM1 and LRRTM2 for neurexin-ß1 with and without Ca(2+). Cell culture studies and binding experiments show that the engineered protein is functional and capable of forming synapselike contacts. The structural and functional data presented here provide the first structure of an LRRTM protein and allow us to propose a model for the molecular mechanism of LRRTM function in the synaptic adhesion.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular Neuronal/química , Células Cultivadas , Cristalografía por Rayos X , Drosophila , Células HEK293 , Humanos , Insectos , Proteínas de la Membrana , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Moléculas de Adhesión de Célula Nerviosa/química , Neuronas/metabolismo , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas
2.
BMC Biochem ; 16: 8, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25888394

RESUMEN

BACKGROUND: The protein growth arrest specific-1 (GAS1) was discovered based on its ability to stop the cell cycle. During development it is involved in embryonic patterning, inhibits cell proliferation and mediates cell death, and has therefore been considered as a tumor suppressor. GAS1 is known to signal through two different cell membrane receptors: Rearranged during transformation (RET), and the sonic hedgehog receptor Patched-1. Sonic Hedgehog signalling is important in stem cell renewal and RET mediated signalling in neuronal survival. Disorders in both sonic hedgehog and RET signalling are connected to cancer progression. The neuroprotective effect of RET is controlled by glial cell-derived neurotrophic factor family ligands and glial cell-derived neurotrophic factor receptor alphas (GFRαs). Human Growth arrest specific-1 is a distant homolog of the GFRαs. RESULTS: We have produced and purified recombinant human GAS1 protein, and confirmed that GAS1 is a monomer in solution by static light scattering and small angle X-ray scattering analysis. The low resolution solution structure reveals that GAS1 is more elongated and flexible than the GFRαs, and the homology modelling of the individual domains show that they differ from GFRαs by lacking the amino acids for neurotrophic factor binding. In addition, GAS1 has an extended loop in the N-terminal domain that is conserved in vertebrates after the divergence of fishes and amphibians. CONCLUSIONS: We conclude that GAS1 most likely differs from GFRαs functionally, based on comparative structural analysis, while it is able to bind the extracellular part of RET in a neurotrophic factor independent manner, although with low affinity in solution. Our structural characterization indicates that GAS1 differs from GFRα's significantly also in its conformation, which probably reflects the functional differences between GAS1 and the GFRαs.


Asunto(s)
Fenómenos Biofísicos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Evolución Molecular , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estabilidad Proteica , Estructura Terciaria de Proteína , Análisis de Secuencia , Homología de Secuencia de Aminoácido , Soluciones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA