Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Physiol ; 174(2): 1037-1050, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28432258

RESUMEN

The LIL3 protein of Arabidopsis (Arabidopsis thaliana) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vías Biosintéticas , Complejos de Proteína Captadores de Luz/metabolismo , Terpenos/metabolismo , Tetrapirroles/biosíntesis , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Proteínas de Cloroplastos , ADN Bacteriano/genética , Fluorescencia , Silenciador del Gen , Cinética , Complejos de Proteína Captadores de Luz/química , Modelos Biológicos , Mutagénesis Insercional , Mutación/genética , Fotosíntesis , Virus de Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Protoclorofilida/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Tilacoides/metabolismo , Triptófano/metabolismo
2.
Plant Physiol ; 170(3): 1817-30, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26823545

RESUMEN

Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas de Unión al ADN/metabolismo , Homeostasis , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Proteínas de Unión al ADN/genética , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Immunoblotting , Liasas/genética , Liasas/metabolismo , Mutación , Plantas Modificadas Genéticamente , Plastidios/genética , Plastidios/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ribosómicas/genética , Homología de Secuencia de Aminoácido , Tetrapirroles/biosíntesis
3.
Plant Cell Environ ; 38(10): 2115-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25808681

RESUMEN

Light-harvesting complex (LHC)-like (LIL) proteins contain two transmembrane helices of which the first bears a chlorophyll (Chl)-binding motif. They are widespread in photosynthetic organisms, but almost nothing is known about their expression and physiological functions. We show that two LIL3 paralogues (LIL3:1 and LIL3:2) in Arabidopsis thaliana are expressed in photosynthetically active tissues and their expression is differentially influenced by light stress. Localization studies demonstrate that both isoforms are associated with subcomplexes of LHC antenna of photosystem II. Transgenic plants with reduced amounts of LIL3:1 exhibited a slightly impaired growth and have reduced Chl and carotenoid contents as compared to wild-type plants. Ectopic overexpression of either paralogue led to a developmentally regulated switch to co-suppression of both LIL3 isoforms, resulting in a circular chlorosis of the leaf rosettes. Chlorotic sectors show severely diminished levels of LIL3 isoforms and other proteins, and thylakoid morphology was changed. Additionally, the levels of enzymes involved in Chl biosynthesis are altered in lil3 mutant plants. Our data support a role of LIL3 paralogues in the regulation of Chl biosynthesis under light stress and under standard growth conditions as well as in a coordinated ligation of newly synthesized and/or rescued Chl molecules to their target apoproteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Oxidorreductasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Oxidorreductasas/genética , Fenotipo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Isoformas de Proteínas
4.
Plant Physiol ; 162(1): 63-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23569108

RESUMEN

The NADPH-dependent thioredoxin reductase C (NTRC) is involved in redox-related regulatory processes in chloroplasts and nonphotosynthetic active plastids. Together with 2-cysteine peroxiredoxin, it forms a two-component peroxide-detoxifying system that acts as a reductant under stress conditions. NTRC stimulates in vitro activity of magnesium protoporphyrin IX monomethylester (MgPMME) cyclase, most likely by scavenging peroxides. Reexamination of tetrapyrrole intermediate levels of the Arabidopsis (Arabidopsis thaliana) knockout ntrc reveals lower magnesium protoporphyrin IX (MgP) and MgPMME steady-state levels, the substrate and the product of MgP methyltransferase (CHLM) preceding MgPMME cyclase, while MgP strongly accumulates in mutant leaves after 5-aminolevulinic acid feeding. The ntrc mutant has a reduced capacity to synthesize 5-aminolevulinic acid and reduced CHLM activity compared with the wild type. Although transcript levels of genes involved in chlorophyll biosynthesis are not significantly altered in 2-week-old ntrc seedlings, the contents of glutamyl-transfer RNA reductase1 (GluTR1) and CHLM are reduced. Bimolecular fluorescence complementation assay confirms a physical interaction of NTRC with GluTR1 and CHLM. While ntrc contains partly oxidized CHLM, the wild type has only reduced CHLM. As NTRC also stimulates CHLM activity in vitro, it is proposed that NTRC has a regulatory impact on the redox status of conserved cysteine residues of CHLM. It is hypothesized that a deficiency of NTRC leads to a lower capacity to reduce cysteine residues of GluTR1 and CHLM, affecting the stability and, thereby, altering the activity in the entire tetrapyrrole synthesis pathway.


Asunto(s)
Arabidopsis/enzimología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Metiltransferasas , NADP/genética , NADP/metabolismo , Oxidación-Reducción , Peroxirredoxinas , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plastidios/enzimología , Plastidios/genética , Plastidios/metabolismo , Protoporfirinas/genética , Protoporfirinas/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/metabolismo , Tetrapirroles/genética , Tetrapirroles/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
5.
J Exp Bot ; 65(6): 1619-36, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24523502

RESUMEN

Retrograde signals from chloroplasts are thought to control the expression of nuclear genes associated with plastidial processes such as acclimation to varying light conditions. Arabidopsis mutants altered in the day and night path of photoassimilate export from the chloroplasts served as tools to study the involvement of carbohydrates in high light (HL) acclimation. A double mutant impaired in the triose phosphate/phosphate translocator (TPT) and ADP-glucose pyrophosphorylase (AGPase) (adg1-1/tpt-2) exhibits a HL-dependent depletion in endogenous carbohydrates combined with a severe growth and photosynthesis phenotype. The acclimation response of mutant and wild-type plants has been assessed in time series after transfer from low light (LL) to HL by analysing photosynthetic performance, carbohydrates, MgProtoIX (a chlorophyll precursor), and the ascorbate/glutathione redox system, combined with microarray-based transcriptomic and GC-MS-based metabolomic approaches. The data indicate that the accumulation of soluble carbohydrates (predominantly glucose) acts as a short-term response to HL exposure in both mutant and wild-type plants. Only if carbohydrates are depleted in the long term (e.g. after 2 d) is the acclimation response impaired, as observed in the adg1-1/tpt-2 double mutant. Furthermore, meta-analyses conducted with in-house and publicly available microarray data suggest that, in the long term, reactive oxygen species such as H2O2 can replace carbohydrates as signals. Moreover, a cross-talk exists between genes associated with the regulation of starch and lipid metabolism. The involvement of genes responding to phytohormones in HL acclimation appears to be less likely. Various candidate genes involved in retrograde control of nuclear gene expression emerged from the analyses of global gene expression.


Asunto(s)
Aclimatación , Arabidopsis/fisiología , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Cloroplastos/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Glucosa/metabolismo , Luz , Metabolómica , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transcriptoma , Regulación hacia Arriba
6.
Plant Cell ; 23(12): 4476-91, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22180625

RESUMEN

5-Aminolevulinic acid (ALA) is the universal precursor for tetrapyrrole biosynthesis and is synthesized in plants in three enzymatic steps: ligation of glutamate (Glu) to tRNA(Glu) by glutamyl-tRNA synthetase, reduction of activated Glu to Glu-1-semialdehyde by glutamyl-tRNA reductase (GluTR), and transamination to ALA by Glu 1-semialdehyde aminotransferase. ALA formation controls the metabolic flow into the tetrapyrrole biosynthetic pathway. GluTR is proposed to be the key regulatory enzyme that is tightly controlled at transcriptional and posttranslational levels. We identified a GluTR binding protein (GluTRBP; previously called PROTON GRADIENT REGULATION7) that is localized in chloroplasts and part of a 300-kD protein complex in the thylakoid membrane. Although the protein does not modulate activity of ALA synthesis, the knockout of GluTRBP is lethal in Arabidopsis thaliana, whereas mutants expressing reduced levels of GluTRBP contain less heme. GluTRBP expression correlates with a function in heme biosynthesis. It is postulated that GluTRBP contributes to subcompartmentalized ALA biosynthesis by maintaining a portion of GluTR at the plastid membrane that funnels ALA into the heme biosynthetic pathway. These results regarding GluTRBP support a model of plant ALA synthesis that is organized in two separate ALA pools in the chloroplast to provide appropriate substrate amounts for balanced synthesis of heme and chlorophyll.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Ácido Aminolevulínico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Aldehído Oxidorreductasas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clorofila/biosíntesis , Clorofila/genética , Cloroplastos/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hemo/genética , Hemo/metabolismo , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
7.
Plant Physiol ; 159(1): 118-30, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22452855

RESUMEN

The chloroplast thioredoxins (TRXs) function as messengers of redox signals from ferredoxin to target enzymes. In this work, we studied the regulatory impact of pea (Pisum sativum) TRX-F on the magnesium (Mg) chelatase CHLI subunit and the enzymatic activation of Mg chelatase in vitro and in vivo. In vitro, reduced TRX-F activated the ATPase activity of pea CHLI and enhanced the activity of Mg chelatase reconstituted from the three recombinant subunits CHLI, CHLD, and CHLH in combination with the regulator protein GENOMES UNCOUPLED4 (GUN4). Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that TRX-F physically interacts with CHLI but not with either of the other two subunits or GUN4. In vivo, virus-induced TRX-F gene silencing (VIGS-TRX-F) in pea plants did not result in an altered redox state of CHLI. However, simultaneous silencing of the pea TRX-F and TRX-M genes (VIGS-TRX-F/TRX-M) resulted in partially and fully oxidized CHLI in vivo. VIGS-TRX-F/TRX-M plants demonstrated a significant reduction in Mg chelatase activity and 5-aminolevulinic acid synthesizing capacity as well as reduced pigment content and lower photosynthetic capacity. These results suggest that, in vivo, TRX-M can compensate for a lack of TRX-F and that both TRXs act as important redox regulators of Mg chelatase. Furthermore, the silencing of TRX-F and TRX-M expression also affects gene expression in the tetrapyrrole biosynthesis pathway and leads to the accumulation of reactive oxygen species, which may also serve as an additional signal for the transcriptional regulation of photosynthesis-associated nuclear genes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Tiorredoxinas en Cloroplasto/metabolismo , Liasas/metabolismo , Pisum sativum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tetrapirroles/biosíntesis , Agrobacterium/genética , Agrobacterium/metabolismo , Ácido Aminolevulínico/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clorofila/metabolismo , Tiorredoxinas en Cloroplasto/genética , Activación Enzimática , Silenciador del Gen , Genes de Plantas , Homeostasis , Datos de Secuencia Molecular , Oxidación-Reducción , Pisum sativum/enzimología , Pisum sativum/genética , Fenotipo , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Mapeo de Interacción de Proteínas , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
8.
Plant Physiol ; 160(4): 1923-39, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23085838

RESUMEN

Low Chlorophyll Accumulation A (LCAA) antisense plants were obtained from a screen for genes whose partial down-regulation results in a strong chlorophyll deficiency in tobacco (Nicotiana tabacum). The LCAA mutants are affected in a plastid-localized protein of unknown function, which is conserved in cyanobacteria and all photosynthetic eukaryotes. They suffer from drastically reduced light-harvesting complex (LHC) contents, while the accumulation of all other photosynthetic complexes per leaf area is less affected. As the disturbed accumulation of LHC proteins could be either attributable to a defect in LHC biogenesis itself or to a bottleneck in chlorophyll biosynthesis, chlorophyll synthesis rates and chlorophyll synthesis intermediates were measured. LCAA antisense plants accumulate magnesium (Mg) protoporphyrin monomethylester and contain reduced protochlorophyllide levels and a reduced content of CHL27, a subunit of the Mg protoporphyrin monomethylester cyclase. Bimolecular fluorescence complementation assays confirm a direct interaction between LCAA and CHL27. 5-Aminolevulinic acid synthesis rates are increased and correlate with an increased content of glutamyl-transfer RNA reductase. We suggest that LCAA encodes an additional subunit of the Mg protoporphyrin monomethylester cyclase, is required for the stability of CHL27, and contributes to feedback-control of 5-aminolevulinic acid biosynthesis, the rate-limiting step of chlorophyll biosynthesis.


Asunto(s)
Ácido Aminolevulínico/metabolismo , Retroalimentación Fisiológica , Oxidorreductasas Intramoleculares/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/metabolismo , Protoporfirinas/metabolismo , Secuencia de Aminoácidos , Clorofila/metabolismo , Clorofila A , Secuencia Conservada , Evolución Molecular , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas Intramoleculares/química , Complejos de Proteína Captadores de Luz/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Fenotipo , Fotosíntesis/genética , Plastidios/metabolismo , Transporte de Proteínas , ARN sin Sentido/metabolismo , Alineación de Secuencia , Tetrapirroles/metabolismo , Nicotiana/genética , Nicotiana/crecimiento & desarrollo
9.
Proc Natl Acad Sci U S A ; 107(38): 16721-5, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20823244

RESUMEN

The light-harvesting chlorophyll-binding (LHC) proteins are major constituents of eukaryotic photosynthetic machinery. In plants, six different groups of proteins, LHC-like proteins, share a conserved motif with LHC. Although the evolution of LHC and LHC-like proteins is proposed to be a key for the diversification of modern photosynthetic eukaryotes, our knowledge of the evolution and functions of LHC-like proteins is still limited. In this study, we aimed to understand specifically the function of one type of LHC-like proteins, LIL3 proteins, by analyzing Arabidopsis mutants lacking them. The Arabidopsis genome contains two gene copies for LIL3, LIL3:1 and LIL3:2. In the lil3:1/lil3:2 double mutant, the majority of chlorophyll molecules are conjugated with an unsaturated geranylgeraniol side chain. This mutant is also deficient in α-tocopherol. These results indicate that reduction of both the geranylgeraniol side chain of chlorophyll and geranylgeranyl pyrophosphate, which is also an essential intermediate of tocopherol biosynthesis, is compromised in the lil3 mutants. We found that the content of geranylgeranyl reductase responsible for these reactions was severely reduced in the lil3 double mutant, whereas the mRNA level for this enzyme was not significantly changed. We demonstrated an interaction of geranylgeranyl reductase with both LIL3 isoforms by using a split ubiquitin assay, bimolecular fluorescence complementation, and combined blue-native and SDS polyacrylamide gel electrophoresis. We propose that LIL3 is functionally involved in chlorophyll and tocopherol biosynthesis by stabilizing geranylgeranyl reductase.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/biosíntesis , Proteínas de Cloroplastos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Tocoferoles/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Secuencia de Bases , Proteínas de Cloroplastos/genética , Cartilla de ADN/genética , Estabilidad de Enzimas , Genes de Plantas , Complejos de Proteína Captadores de Luz/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Oxidorreductasas/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Homología de Secuencia de Aminoácido
10.
Plant Cell Physiol ; 51(7): 1229-41, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20460500

RESUMEN

Mg protoporphyrin monomethylester (MgProtoME) cyclase catalyzes isocyclic ring formation to form divinyl protochlorophyllide. The CHL27 protein is part of the cyclase complex. Deficiency of CHL27 has been previously reported to compromise photosynthesis and nuclear gene expression. In a comprehensive analysis of different CHL27 antisense tobacco lines grown under different light conditions, the physiological consequences of gradually reduced CHL27 expression on the tetrapyrrole biosynthetic pathway were explored. Excessive amounts of MgProtoME, the substrate of the cyclase reaction, accumulated in response to the reduced CHL27 content. Moreover, 5-aminolevulinic acid (ALA) synthesis, Mg chelatase and Mg protoporphyrin methyltransferase activities were reduced in transgenic plants. Compared with growth under continuous light exposure, the CHL27-deficient plants showed a stronger reduction in Chl content, cell death and leaf necrosis during diurnal light/dark cycles. This photooxidative phenotype correlated with a rapidly increasing MgProtoME steady-state level at the beginning of each light period. In contrast, the same transformants grown under continuous light exposure possessed a permanently elevated amount of MgProtoME. Its lower phototoxicity correlated with increased activities of ascorbate peroxidase and catalase, and a higher amount of reduced ascorbate. It is proposed that improved stress acclimation during continuous light in comparison with light-dark growth increases the capacity to prevent photooxidation by excess tetrapyrrole precursors and lowers the susceptibility to secondary photodynamic damage.


Asunto(s)
Luz , Estrés Oxidativo , Oxigenasas/metabolismo , Tetrapirroles/biosíntesis , Liasas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Porfirinas/análisis , ARN sin Sentido/genética , Nicotiana/enzimología , Nicotiana/genética
11.
Plant Physiol Biochem ; 65: 17-26, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23416492

RESUMEN

The first committed and highly regulated step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, which is catalyzed by Mg chelatase that consists of CHLH, CHLD and CHLI subunits. In this study, CHLI and CHLD genes were suppressed by virus-induced gene silencing (VIGS-CHLI and VIGS-CHLD) in pea (Pisum sativum), respectively. VIGS-CHLI and VIGS-CHLD plants both showed yellow leaf phenotypes with the reduced Mg chelatase activity and the inactivated synthesis of 5-aminolevulinic acid. The lower chlorophyll accumulation correlated with undeveloped thylakoid membranes, altered chloroplast nucleoid structure, malformed antenna complexes and compromised photosynthesis capacity in the yellow leaf tissues of the VIGS-CHLI and VIGS-CHLD plants. Non-enzymatic antioxidant contents and the activities of antioxidant enzymes were altered in response to enhanced accumulation of reactive oxygen species (ROS) in the chlorophyll deficient leaves of VIGS-CHLI and VIGS-CHLD plants. Furthermore, the results of metabolite profiling indicate a tight correlation between primary metabolic pathways and Mg chelatase activity. We also found that CHLD induces a feedback-regulated change of the transcription of photosynthesis-associated nuclear genes. CHLD and CHLI silencing resulted in a rapid reduction of photosynthetic proteins. Taken together, Mg chelatase is not only a key regulator of tetrapyrrole biosynthesis but its activity also correlates with ROS homeostasis, primary interorganellar metabolism and retrograde signaling in plant cells.


Asunto(s)
Cloroplastos/metabolismo , Silenciador del Gen/fisiología , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Tetrapirroles/biosíntesis , Virus/genética , Pisum sativum/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA