Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 592(7852): 138-143, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731925

RESUMEN

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Asunto(s)
Antígenos Bacterianos/análisis , Antígenos Bacterianos/inmunología , Bacterias/inmunología , Antígenos HLA/inmunología , Melanoma/inmunología , Melanoma/microbiología , Péptidos/análisis , Péptidos/inmunología , Presentación de Antígeno , Bacterias/clasificación , Bacterias/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Antígenos HLA/análisis , Humanos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patología , Metástasis de la Neoplasia/inmunología , Filogenia , ARN Ribosómico 16S/genética
2.
Nucleic Acids Res ; 51(17): 9369-9384, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37503837

RESUMEN

Bloom's syndrome (BLM) protein is a known nuclear helicase that is able to unwind DNA secondary structures such as G-quadruplexes (G4s). However, its role in the regulation of cytoplasmic processes that involve RNA G-quadruplexes (rG4s) has not been previously studied. Here, we demonstrate that BLM is recruited to stress granules (SGs), which are cytoplasmic biomolecular condensates composed of RNAs and RNA-binding proteins. BLM is enriched in SGs upon different stress conditions and in an rG4-dependent manner. Also, we show that BLM unwinds rG4s and acts as a negative regulator of SG formation. Altogether, our data expand the cellular activity of BLM and shed light on the function that helicases play in the dynamics of biomolecular condensates.


Asunto(s)
G-Cuádruplex , Gránulos de Estrés , Humanos , ADN/química , RecQ Helicasas/metabolismo , ARN/genética , Gránulos de Estrés/metabolismo
3.
New Phytol ; 243(1): 258-270, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38622801

RESUMEN

Unicellular organisms are known to exert tight control over their cell size. In the case of diatoms, abundant eukaryotic microalgae, two opposing notions are widely accepted. On the one hand, the rigid silica cell wall that forms inside the parental cell is thought to enforce geometrical reduction of the cell size. On the other hand, numerous exceptions cast doubt on the generality of this model. Here, we monitored clonal cultures of the diatom Stephanopyxis turris for up to 2 yr, recording the sizes of thousands of cells, in order to follow the distribution of cell sizes in the population. Our results show that S. turris cultures above a certain size threshold undergo a gradual size reduction, in accordance with the postulated geometrical driving force. However, once the cell size reaches a lower threshold, it fluctuates around a constant size using the inherent elasticity of cell wall elements. These results reconcile the disparate observations on cell size regulation in diatoms by showing two distinct behaviors, reduction and homeostasis. The geometrical size reduction is the dominant driving force for large cells, but smaller cells have the flexibility to re-adjust the size of their new cell walls.


Asunto(s)
Tamaño de la Célula , Pared Celular , Diatomeas , Homeostasis , Dióxido de Silicio , Diatomeas/fisiología , Diatomeas/citología , Modelos Biológicos
4.
EMBO Rep ; 23(7): e54755, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35642585

RESUMEN

Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.


Asunto(s)
Vesículas Extracelulares , Malaria , Parásitos , Animales , Eritrocitos/parasitología , Vesículas Extracelulares/metabolismo , Humanos , Plasmodium falciparum
5.
Nucleic Acids Res ; 50(20): 11426-11441, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350614

RESUMEN

RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Existing computational tools for rG4 prediction rely on specific sequence features and/or were trained on small datasets, without considering rG4 stability information, and are therefore sub-optimal. Here, we developed rG4detector, a convolutional neural network to identify potential rG4s in transcriptomics data. rG4detector outperforms existing methods in both predicting rG4 stability and in detecting rG4-forming sequences. To demonstrate the biological-relevance of rG4detector, we employed it to study RNAs that are bound by the RNA-binding protein G3BP1. G3BP1 is central to the induction of stress granules (SGs), which are cytoplasmic biomolecular condensates that form in response to a variety of cellular stresses. Unexpectedly, rG4detector revealed a dynamic enrichment of rG4s bound by G3BP1 in response to cellular stress. In addition, we experimentally characterized G3BP1 cross-talk with rG4s, demonstrating that G3BP1 is a bona fide rG4-binding protein and that endogenous rG4s are enriched within SGs. Furthermore, we found that reduced rG4 availability impairs SG formation. Hence, we conclude that rG4s play a direct role in SG biology via their interactions with RNA-binding proteins and that rG4detector is a novel useful tool for rG4 transcriptomics data analyses.


Asunto(s)
G-Cuádruplex , Proteínas de Unión al ARN , Gránulos de Estrés , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088837

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Fibrosis , Mutación Missense , Neoplasias Pancreáticas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Linfocitos T CD8-positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
7.
Genes Dev ; 30(7): 786-97, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27013235

RESUMEN

The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.


Asunto(s)
Hígado Graso/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Colesterol en la Dieta/farmacología , Hígado Graso/genética , Eliminación de Gen , Regulación de la Expresión Génica/genética , Células Hep G2 , Homeostasis/genética , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Ratones Noqueados , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
8.
EMBO J ; 38(18): e100849, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31424120

RESUMEN

The placenta is an autonomous organ that maintains fetal growth and development. Its multinucleated syncytiotrophoblast layer, providing fetal nourishment during gestation, exhibits characteristics of cellular senescence. We show that in human placentas from pregnancies with intrauterine growth restriction, these characteristics are decreased. To elucidate the functions of pathways regulating senescence in syncytiotrophoblast, we used dynamic contrast-enhanced MRI in mice with attenuated senescence programs. This approach revealed an altered dynamics in placentas of p53-/- , Cdkn2a-/- , and Cdkn2a-/- ;p53-/- mice, accompanied by histopathological changes in placental labyrinths. Human primary syncytiotrophoblast upregulated senescence markers and molecular pathways associated with cell-cycle inhibition and senescence-associated secretory phenotype. The pathways and components of the secretory phenotype were compromised in mouse placentas with attenuated senescence and in human placentas from pregnancies with intrauterine growth restriction. We propose that molecular mediators of senescence regulate placental structure and function, through both cell-autonomous and non-autonomous mechanisms.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Retardo del Crecimiento Fetal/genética , Redes Reguladoras de Genes , Placenta/diagnóstico por imagen , Proteína p53 Supresora de Tumor/genética , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Imagen por Resonancia Magnética , Ratones , Fenotipo , Placenta/metabolismo , Embarazo , Transducción de Señal , Trofoblastos/metabolismo
9.
Mol Psychiatry ; 26(11): 6149-6158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34349224

RESUMEN

The COVID-19 pandemic poses multiple psychologically stressful challenges and is associated with an increased risk for mental illness. Previous studies have focused on the psychopathological symptoms associated with the outbreak peak. Here, we examined the behavioural and mental-health impact of the pandemic in Israel using an online survey, during the six weeks encompassing the end of the first outbreak and the beginning of the second. We used clinically validated instruments to assess anxiety- and depression-related emotional distress, symptoms, and coping strategies, as well as questions designed to specifically assess COVID-19-related concerns. Higher emotional burden was associated with being female, younger, unemployed, living in high socioeconomic status localities, having prior medical conditions, encountering more people, and experiencing physiological symptoms. Our findings highlight the environmental context and its importance in understanding individual ability to cope with the long-term stressful challenges of the pandemic.


Asunto(s)
COVID-19 , Ansiedad/epidemiología , Depresión/epidemiología , Brotes de Enfermedades , Femenino , Humanos , Pandemias , SARS-CoV-2 , Estrés Psicológico/epidemiología
10.
PLoS Pathog ; 15(4): e1007708, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31017983

RESUMEN

Infection by large dsDNA viruses can lead to a profound alteration of host transcriptome and metabolome in order to provide essential building blocks to support the high metabolic demand for viral assembly and egress. Host response to viral infection can typically lead to diverse phenotypic outcome that include shift in host life cycle and activation of anti-viral defense response. Nevertheless, there is a major bottleneck to discern between viral hijacking strategies and host defense responses when averaging bulk population response. Here we study the interaction between Emiliania huxleyi, a bloom-forming alga, and its specific virus (EhV), an ecologically important host-virus model system in the ocean. We quantified host and virus gene expression on a single-cell resolution during the course of infection, using automatic microfluidic setup that captures individual algal cells and multiplex quantitate PCR. We revealed high heterogeneity in viral gene expression among individual cells. Simultaneous measurements of expression profiles of host and virus genes at a single-cell level allowed mapping of infected cells into newly defined infection states and allowed detection specific host response in a subpopulation of infected cell which otherwise masked by the majority of the infected population. Intriguingly, resistant cells emerged during viral infection, showed unique expression profiles of metabolic genes which can provide the basis for discerning between viral resistant and susceptible cells within heterogeneous populations in the marine environment. We propose that resolving host-virus arms race at a single-cell level will provide important mechanistic insights into viral life cycles and will uncover host defense strategies.


Asunto(s)
Eutrofización , Genes Virales , Haptophyta/genética , Haptophyta/virología , Phycodnaviridae/patogenicidad , Análisis de la Célula Individual/métodos , Virosis/genética , Haptophyta/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Phycodnaviridae/genética , Phycodnaviridae/aislamiento & purificación , Transcriptoma , Virosis/virología
11.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203408

RESUMEN

TENT4A (PAPD7) is a non-canonical poly(A) polymerase, of which little is known. Here, we show that TENT4A regulates multiple biological pathways and focuses on its multilayer regulation of translesion DNA synthesis (TLS), in which error-prone DNA polymerases bypass unrepaired DNA lesions. We show that TENT4A regulates mRNA stability and/or translation of DNA polymerase η and RAD18 E3 ligase, which guides the polymerase to replication stalling sites and monoubiquitinates PCNA, thereby enabling recruitment of error-prone DNA polymerases to damaged DNA sites. Remarkably, in addition to the effect on RAD18 mRNA stability via controlling its poly(A) tail, TENT4A indirectly regulates RAD18 via the tumor suppressor CYLD and via the long non-coding antisense RNA PAXIP1-AS2, which had no known function. Knocking down the expression of TENT4A or CYLD, or overexpression of PAXIP1-AS2 led each to reduced amounts of the RAD18 protein and DNA polymerase η, leading to reduced TLS, highlighting PAXIP1-AS2 as a new TLS regulator. Bioinformatics analysis revealed that TLS error-prone DNA polymerase genes and their TENT4A-related regulators are frequently mutated in endometrial cancer genomes, suggesting that TLS is dysregulated in this cancer.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Neoplasias Endometriales/metabolismo , Mutación/genética , Polinucleotido Adenililtransferasa/metabolismo , ARN Mensajero/metabolismo , Western Blotting , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Biología Computacional , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Neoplasias Endometriales/genética , Femenino , Células HEK293 , Humanos , Inmunoprecipitación , Células MCF-7 , Reacción en Cadena de la Polimerasa , Polinucleotido Adenililtransferasa/genética , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , ARN Mensajero/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética , Ubiquitinación/fisiología
12.
Brain Behav Immun ; 87: 301-308, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31887416

RESUMEN

OBJECTIVE: Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat anxiety and/or depression in pediatric populations. However, the response rates are low (approximately 50%). Moreover, SSRI use is frequently associated with adverse events (AE). Currently there are no available biomarkers for treatment response/AE. Identification of biomarkers predicting early response and/or AE could help maximize the benefit-risk ratio for the use of SSRIs, and accelerate matching of treatments to patients. Pro-inflammatory cytokines were proposed as potential biomarkers. METHOD: Ninety-two patients (35 boys and 57 girls) with major depressive disorder and/or anxiety disorders, aged 13.90 ±â€¯2.41 years, were treated with fluoxetine (FLX) for 8 weeks. Plasma concentrations of TNFα, IL-6, and IL-1ß were measured by enzyme linked immunosorbent assays before and after FLX treatment. Clinical response and AE were measured using several clinical scales, including the Clinical Global Impression - improvement, Children's Depression Rating Scale-Revised, the Beck Depression Inventory, the Screen for Child Anxiety Related Emotional Disorders, the Columbia suicide severity rating scale, and the Suicide Ideation Questionnaire. RESULTS: IL-6 levels increased after treatment only in the group of children who developed FLX-associated suicidality. CONCLUSION: An increase in IL-6 levels during treatment may be a risk factor for the emergence of FLX-associated suicidality (OR = 1.70). Further studies are necessary to clarify the role and mechanism(s) of this cytokine in the pathogenesis of this life-threatening AE.


Asunto(s)
Trastorno Depresivo Mayor , Fluoxetina , Adolescente , Niño , Femenino , Humanos , Interleucina-6 , Masculino , Factores de Riesgo , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Ideación Suicida
13.
J Asthma ; 57(7): 722-735, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31017024

RESUMEN

Objectives: Asthma is a multifactorial, heterogeneous, complex and common chronic respiratory disease driven by diverse mechanisms. Although asthma presents various clinical forms with different levels of severity, it is unclear whether asthma severities are a consequence of disease management or varied etiologies. We sought to investigate this question.Methods: This article presents a cross-sectional study of 113,671 Israeli adolescents. Univariate and multivariable logistic regression models were performed to analyze the independent associations between mild asthma and moderate-to-severe asthma phenotypes and coexistent medical conditions within each gender separately. Hierarchical clustering of the odds ratios of the diverse statistically significant medical conditions associated with asthma severity-gender groups was also performed. We focused on the allergic and neurological-cognitive-mental disorders.Results: Among males, two associations were common to both asthma groups (atopic dermatitis and allergic rhinitis), five unique to mild asthma (urticaria/angioedema, Hymenoptera/bee allergies, allergic conjunctivitis, epilepsy and migraine) and two unique to moderate-to-severe asthma (learning disabilities and ADD/ADHD (Attention-deficit disorder/Attention-deficit/hyperactivity disorder)). Among females, two associations were common to both clinical asthma groups (allergic rhinitis and urticaria/angioedema), and five unique to moderate-to-severe asthma (atopic dermatitis, learning disabilities, ADD/ADHD, anxiety/mood disorders and migraine). Allergic rhinitis was the only condition to be associated with all four groups. Learning disabilities and ADD/ADHD were only associated with moderate-to-severe asthma (but not with mild asthma), in both males and females. Hierarchical clustering analysis uncovered two prominent clusters, separating mild from moderate-to-severe asthma.Conclusions: The differences between mild and moderate-to-severe asthma enhance asthma phenotype characterization, with respect to comorbidities, and indicate varied etiologies.


Asunto(s)
Asma/diagnóstico , Índice de Severidad de la Enfermedad , Adolescente , Asma/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Comorbilidad , Conjuntivitis Alérgica/epidemiología , Estudios Transversales , Dermatitis Atópica/epidemiología , Epilepsia/epidemiología , Femenino , Humanos , Israel/epidemiología , Discapacidades para el Aprendizaje/epidemiología , Masculino , Trastornos Migrañosos/epidemiología , Rinitis Alérgica/epidemiología , Factores de Riesgo , Factores Sexuales , Urticaria/epidemiología , Adulto Joven
15.
Eur J Immunol ; 48(8): 1308-1318, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29697861

RESUMEN

Microglia are resident immune cells in the CNS, strategically positioned to clear dead cells and debris, and orchestrate CNS inflammation and immune defense. In steady state, these macrophages lack MHC class II (MHCII) expression, but microglia activation can be associated with MHCII induction. Whether microglial MHCII serves antigen presentation for critical local T-cell restimulation in CNS auto-immune disorders or modulates microglial signaling output remains under debate. To probe for such scenarios, we generated mice harboring an MHCII deficiency in microglia, but not peripheral myeloid cells. Using the CX3 CR1CreER -based approach we report that microglial antigen presentation is obsolete for the establishment of EAE, with disease onset, progression, and severity unaltered in mutant mice. Antigen presentation-independent roles of microglial MHCII were explored using a demyelination model induced by the copper chelator cuprizone. Absence of microglial I-Ab did not affect the extent of these chemically induced white matter alterations, nor did it affect microglial proliferation or gene expression associated with locally restricted de- and remyelination.


Asunto(s)
Presentación de Antígeno/inmunología , Enfermedades Desmielinizantes/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Macrófagos/inmunología , Microglía/inmunología , Animales , Proliferación Celular , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología
16.
Proc Natl Acad Sci U S A ; 113(12): E1605-14, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951665

RESUMEN

The proper functioning of any biological system depends on the coordinated activity of its components. Regulation at the genetic level is, in many cases, effective in determining the cellular levels of system components. However, in cases where regulation at the genetic level is insufficient for attaining harmonic system function, posttranslational regulatory mechanisms are often used. Here, we uncover posttranslational regulatory mechanisms in the prokaryotic ubiquitin-like protein (Pup)-proteasome system (PPS), the bacterial equivalent of the eukaryotic ubiquitin-proteasome system. Pup, a ubiquitin analog, is conjugated to proteins through the activities of two enzymes, Dop (deamidase of Pup) and PafA (proteasome accessory factor A), the Pup ligase. As Dop also catalyzes depupylation, it was unclear how PPS function could be maintained without Dop and PafA canceling the activity of the other, and how the two activities of Dop are balanced. We report that tight Pup binding and the limited degree of Dop interaction with high-molecular-weight pupylated proteins results in preferred Pup deamidation over protein depupylation by this enzyme. Under starvation conditions, when accelerated protein pupylation is required, this bias is intensified by depletion of free Dop molecules, thereby minimizing the chance of depupylation. We also find that, in contrast to Dop, PafA presents a distinct preference for high-molecular-weight protein substrates. As such, PafA and Dop act in concert, rather than canceling each other's activity, to generate a high-molecular-weight pupylome. This bias in pupylome molecular weight distribution is consistent with the proposed nutritional role of the PPS under starvation conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Unión Competitiva , Peso Molecular , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
17.
Hum Mol Genet ; 24(11): 3192-205, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25721402

RESUMEN

We analysed gene expression microarray data from whole blood samples from 228 multiple sclerosis (MS) patients either untreated or treated with one of three alternative commonly used interferon beta (IFNß) disease modifying drugs: Avonex (×1 weekly), Betaseron (every second day) or Rebif (×3 weekly). Patient injections were not timed to coordinate sample collections, thus providing a global transcriptomic profile for each population of patients studied. Three hundred and fifty one genes were significantly differentially expressed by at least one of the IFNß drugs. Despite the different drug sources with distinct injection and dosage protocols, a striking similarity was found in the identity and functional classes of the differentially expressed genes induced. Using the 25 most-upregulated genes, we defined a robust IFNß gene expression signature that quantifies the IFN activation state per blood sample collected irrespective of the type of IFNß therapy. This 25-gene signature also defined basal IFN activation states among untreated MS patients, which differed among individuals but remained relatively constant per patient with time. The maximum drug-induced IFN-activation state was similar for all three drugs despite a 1.7-2.0-fold diminished average effect for Avonex. This and a more erratic effect of Avonex per patient across longitudinal measurements is likely a result of its reduced injection frequency. In summary, we have defined a robust blood-derived type I IFN gene signature from MS patients. This signature could potentially serve to generically quantify the systemic Type I IFN activation status for any other clinical manifestation, inclusive of other autoimmune diseases.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Interferón beta-1a/farmacología , Interferon beta-1b/farmacología , Esclerosis Múltiple/sangre , Transcriptoma/efectos de los fármacos , Adyuvantes Inmunológicos/uso terapéutico , Humanos , Interferón beta-1a/uso terapéutico , Interferon beta-1b/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología
18.
Int J Cancer ; 139(8): 1788-98, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27242346

RESUMEN

Metastatic ovarian cancer, the most lethal of gynecologic malignancies, is typically managed by debulking surgery, followed by chemotherapy. However, despite significant efforts, survival rate remains low. We have previously demonstrated, in mouse models, a specific systemic homing of labeled fibroblasts to solid ovarian tumors. Here, we demonstrate the feasibility of utilizing this specific homing of genetically modified fibroblasts for detection and targeted therapy of orthotopic metastatic ovarian carcinoma model in immune-deficient mice. Using an in vivo metastatic mouse model for ovarian cancer, we demonstrated that fibroblasts expressing fluorescent reporters injected intra-peritoneally, were specifically recruited to peritoneal tumor nodules (resulting in 93-100% co-localization). We further used fibroblasts over expressing the soluble receptor variant of VEGFR1 (s-Flt1). Mice bearing tumors were injected weekly with either control or s-Flt1 expressing fibroblasts. Injection of s-Flt1 expressing fibroblasts resulted in a significant reduction in the ascites volume, reduced vascularization of adherent metastases, and improved overall survival. Using fluorescently labeled fibroblasts for tumor detection with readily available intra-operative fluorescence imaging tools may be useful for tumor staging and directing biopsies or surgical efforts during exploratory or debulking surgery. Fibroblasts may serve as a beacon pointing to the otherwise invisible metastases in the peritoneal cavity of ovarian cancer patients. Utilizing the recruited fibroblasts also for targeted delivery of anti angiogenic or antitumor molecules may aid in controlling tumor progression. Thus, these results suggest a novel approach for targeting ovarian tumor metastases for both tumor detection and therapy.


Asunto(s)
Fibroblastos/patología , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Animales , Carcinoma Epitelial de Ovario , Línea Celular Transformada , Línea Celular Tumoral , Femenino , Fibroblastos/metabolismo , Fibroblastos/trasplante , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Haplorrinos , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Neoplasias Glandulares y Epiteliales/irrigación sanguínea , Neoplasias Glandulares y Epiteliales/diagnóstico por imagen , Neoplasias Glandulares y Epiteliales/terapia , Neoplasias Ováricas/irrigación sanguínea , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/terapia , Receptor 1 de Factores de Crecimiento Endotelial Vascular/biosíntesis
19.
Biol Reprod ; 94(1): 14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26490838

RESUMEN

Ovarian tissue cryopreservation and transplantation is one of a few available treatments for fertility preservation in women diagnosed with cancer. Rapid revascularization is essential for reducing hypoxic damage after grafting and protecting the primordial follicles reserve. Using a mouse model of heterotopic ovarian graft transplantation, we have delineated the role of endothelial Akt1 expression using longitudinal magnetic resonance imaging follow-up to quantify angiogenic response. Endothelial Akt1 activation in ovarian grafts promoted angiogenesis to support the graft during posttransplantation hypoxic period. Similarly, simvastatin therapy activated Akt1 at the transplantation site and improved the revascularization and vascular support of ovarian grafts. These results serve as an important first step toward pharmacological intervention to improve revascularization of ovarian grafts and restoration of fertility in cancer survivors. The pro-angiogenic effects reported here may extend beyond improving ovarian graft reception in fertility preservation and could potentially be used for different organ or tissue transplantation.


Asunto(s)
Neovascularización Fisiológica/genética , Ovario/irrigación sanguínea , Ovario/trasplante , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Criopreservación , Femenino , Supervivencia de Injerto/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipoxia/metabolismo , Infertilidad Femenina/terapia , Imagen por Resonancia Magnética , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Flujo Sanguíneo Regional , Simvastatina/farmacología
20.
ISME Commun ; 3(1): 72, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452148

RESUMEN

Phytoplankton produce the volatile dimethyl sulfide (DMS), an important infochemical mediating microbial interactions, which is also emitted to the atmosphere and affecting the global climate. Albeit the enzymatic source for DMS in eukaryotes was elucidated, namely a DMSP lyase (DL) called Alma1, we still lack basic knowledge regarding its taxonomic distribution. We defined unique sequence motifs which enable the identification of DL homologs (DLHs) in model systems and environmental populations. We used these motifs to predict DLHs in diverse algae by analyzing hundreds of genomic and transcriptomic sequences from model systems under stress conditions and from environmental samples. Our findings show that the DL enzyme is more taxonomically widespread than previously thought, as it is encoded by known algal taxa as haptophytes and dinoflagellates, but also by chlorophytes, pelagophytes and diatoms, which were conventionally considered to lack the DL enzyme. By exploring the Tara Oceans database, we showed that DLHs are widespread across the oceans and are predominantly expressed by dinoflagellates. Certain dinoflagellate DLHs were differentially expressed between the euphotic and mesopelagic zones, suggesting a functional specialization and an involvement in the metabolic plasticity of mixotrophic dinoflagellates. In specific regions as the Southern Ocean, DLH expression by haptophytes and diatoms was correlated with environmental drivers such as nutrient availability. The expanded repertoire of putative DL enzymes from diverse microbial origins and geographic niches suggests new potential players in the marine sulfur cycle and provides a foundation to study the cellular function of the DL enzyme in marine microbes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA