Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; 37(7): 898-910, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28076998

RESUMEN

Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today's agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial.


Asunto(s)
Arabidopsis/metabolismo , 6-Fitasa , Fosfatos , Ácido Fítico , Triticum
2.
J Plant Res ; 129(3): 423-34, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26818949

RESUMEN

Salinity stress reduces plant productivity, but low levels of salinity often increase plant growth rates in some species. We herein describe the effects of salinity on plant growth while focusing on nitrogen use. We treated Trifolium alexandrinum with two nitrogen concentrations and salinity levels and determined growth rates, mineral concentrations, nitrogen use efficiency, photosynthesis rates, and nitrate reductase (NR, E.C. 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) activities. The T. alexandrinum growth rate increased following treatment with 100 mM NaCl in low nitrogen (LN) and high nitrogen (HN) conditions. Salt treatment also increased root volume, intrinsic water use efficiency, and nitrogen use efficiency in LN and HN conditions. These changes likely contributed to higher biomass production. Salinity also increased accumulations of sodium, chloride, and phosphate, but decreased potassium and calcium levels and total nitrogen concentrations in all plant organs independently of the available nitrogen level. However, the effect of salt treatment on magnesium and nitrate concentrations in photosynthetic organs depended on nitrogen levels. Salt treatment reduced photosynthesis rates in LN and HN conditions because of inhibited stomatal conductance. The effects of salinity on leaf NR and GS activities depended on nitrogen levels, with activities increasing in LN conditions. In saline conditions, LN availability resulted in optimal growth because of low chloride accumulation and increases in total nitrogen concentrations, nitrogen use efficiency, and NR and GS activities in photosynthetic organs. Therefore, T. alexandrinum is a legume forage crop that can be cultivated in low-saline soils where nitrogen availability is limited.


Asunto(s)
Nitrógeno/farmacología , Salinidad , Cloruro de Sodio/farmacología , Trifolium/fisiología , Biomasa , Pruebas de Enzimas , Glutamato-Amoníaco Ligasa/metabolismo , Minerales/análisis , Nitrato-Reductasa/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Tallos de la Planta/anatomía & histología , Tallos de la Planta/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Transpiración de Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Trifolium/anatomía & histología , Trifolium/efectos de los fármacos , Trifolium/crecimiento & desarrollo
3.
J Exp Bot ; 65(20): 5725-41, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25080087

RESUMEN

Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.


Asunto(s)
Homeostasis , Fosfatos/metabolismo , Plantas/metabolismo , Transducción de Señal , Zinc/metabolismo , Agricultura , Transporte Biológico , Fertilizantes
4.
Plant Physiol Biochem ; 136: 67-75, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30658286

RESUMEN

This work characterized mechanisms controlling cadmium (Cd) tolerance and accumulation in lettuce at both the physiological and genetic levels. These traits were evaluated in 18 Lactuca accessions representing a large genetic diversity. Cd tolerance and accumulation in roots and shoots as well as Cd translocation from roots to the shoot varied independently, and with a significant range of variation. Analyses of F1 progenies of crosses between cultivars with contrasted phenotypes showed that high tolerance to Cd, low Cd accumulation and low Cd root-shoot translocation were recessive traits. Results of analyses of F2 progenies of different crosses suggest that root Cd concentration and root-shoot Cd translocation were under a complex genetic determinism involving at least two loci. This work thus revealed that limiting both Cd accumulation and Cd root-shoot translocation in lettuce is possible and depends on recessive loci. Differences in the ability to accumulate Cd in roots in the long term could not be linked to differences in short-term 109Cd uptake into, or efflux from, roots. In contrast, the cultivar with the highest root-shoot Cd translocation was the same in the long term and in the short term, which suggests that this trait relies on processes that are implemented quickly (i.e. in less than three days) after the start of Cd exposure.


Asunto(s)
Cadmio/metabolismo , Lactuca/genética , Cadmio/análisis , Sitios Genéticos/genética , Lactuca/química , Lactuca/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Carácter Cuantitativo Heredable
5.
Biomed Res Int ; 2014: 548254, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25025059

RESUMEN

Inorganic phosphate (Pi) and Zinc (Zn) are essential nutrients for normal plant growth. Interaction between these elements has been observed in many crop plants. Despite its agronomic importance, the biological significance and genetic basis of this interaction remain largely unknown. Here we examined the Pi/Zn interaction in two lettuce (Lactuca sativa) varieties, namely, "Paris Island Cos" and "Kordaat." The effects of variation in Pi and Zn supply were assessed on biomass and photosynthesis for each variety. Paris Island Cos displayed better growth and photosynthesis compared to Kordaat under all the conditions tested. Correlation analysis was performed to determine the interconnectivity between Pi and Zn intracellular contents in both varieties. Paris Island Cos showed a strong negative correlation between the accumulation levels of Pi and Zn in shoots and roots. However, no relation was observed for Kordaat. The increase of Zn concentration in the medium causes a decrease in dynamics of Pi transport in Paris Island Cos, but not in Kordaat plants. Taken together, results revealed a contrasting behavior between the two lettuce varieties in terms of the coregulation of Pi and Zn homeostasis and provided evidence in favor of a genetic basis for the interconnection of these two elements.


Asunto(s)
Lactuca/metabolismo , Fosfatos/metabolismo , Zinc/metabolismo , Transporte Biológico , Biomasa , Lactuca/crecimiento & desarrollo , Fosfatos/administración & dosificación , Fotosíntesis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Zinc/administración & dosificación
6.
J Plant Physiol ; 167(15): 1239-47, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20576318

RESUMEN

Lettuce (Lactuca sativa) is a plant species that shows high accumulation of cadmium, a toxic heavy metal. Lettuce is therefore a good model both for identifying determinants controlling cadmium accumulation in plant tissues and for developing breeding strategies aimed at limiting cadmium accumulation in edible tissues. In this work, 14-day-old plants from three lettuce varieties were grown for 8 days on media supplemented with cadmium concentrations ranging from 0 to 50 microM. Growth, as well as Cd(2+), Zn(2+), K(+), Ca(2+), NO(3)(-), SO(4)(2-), Cl(-), phosphate, malate and citrate root an shoot contents were analyzed. The three lettuce varieties Paris Island Cos, Red Salad Bowl and Kordaat displayed differential abilities to accumulate cadmium in roots and shoots, Paris Island Cos displaying the lowest cadmium content and Kordaat the highest. From the global analysis of the three varieties, three main trends were identified. First, a common negative correlation linked cadmium tissue content and relative dry weight reduction in response to cadmium treatments in the three varieties. Second, increasing cadmium concentration in the culture medium resulted in a parallel increase in zinc tissue content in all lettuce varieties. A common strong positive correlation between cadmium and zinc contents was observed for all varieties. This suggested that systems enabling zinc and cadmium transport were induced by cadmium. Finally, the cadmium treatments had a contrasting effect on anion contents in tissues. Interestingly, citrate content in shoots was correlated with cadmium translocation from roots to shoots, suggesting that citrate might play a role in cadmium transport in the xylem vessels. Altogether, these results shed light on three main strategies developed by lettuce to cope with cadmium, which could help to develop breeding strategies aimed at limiting cadmium accumulation in lettuce.


Asunto(s)
Adaptación Fisiológica , Cadmio/metabolismo , Ácido Cítrico/metabolismo , Lactuca/metabolismo , Zinc/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Aniones/metabolismo , Transporte Biológico/efectos de los fármacos , Cadmio/toxicidad , Calcio/metabolismo , Medios de Cultivo/farmacología , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Potasio/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA