Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364788

RESUMEN

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Asunto(s)
Vaina de Mielina , Retroelementos , Animales , Expresión Génica , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Retroelementos/genética , ARN/metabolismo , Pez Cebra/genética , Anuros
2.
Cell ; 182(3): 594-608.e11, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32679030

RESUMEN

Human cerebral cortex size and complexity has increased greatly during evolution. While increased progenitor diversity and enhanced proliferative potential play important roles in human neurogenesis and gray matter expansion, the mechanisms of human oligodendrogenesis and white matter expansion remain largely unknown. Here, we identify EGFR-expressing "Pre-OPCs" that originate from outer radial glial cells (oRGs) and undergo mitotic somal translocation (MST) during division. oRG-derived Pre-OPCs provide an additional source of human cortical oligodendrocyte precursor cells (OPCs) and define a lineage trajectory. We further show that human OPCs undergo consecutive symmetric divisions to exponentially increase the progenitor pool size. Additionally, we find that the OPC-enriched gene, PCDH15, mediates daughter cell repulsion and facilitates proliferation. These findings indicate properties of OPC derivation, proliferation, and dispersion important for human white matter expansion and myelination.


Asunto(s)
Cadherinas/metabolismo , Corteza Cerebral/citología , Células Ependimogliales/metabolismo , Neurogénesis/genética , Células Precursoras de Oligodendrocitos/metabolismo , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Proliferación Celular/genética , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Células Ependimogliales/citología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Células Precursoras de Oligodendrocitos/citología , ARN Interferente Pequeño , RNA-Seq , Análisis de la Célula Individual , Sustancia Blanca/citología , Sustancia Blanca/embriología , Sustancia Blanca/metabolismo
3.
Cell ; 158(2): 383-396, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25018103

RESUMEN

Myelin sheaths provide critical functional and trophic support for axons in white matter tracts of the brain. Oligodendrocyte precursor cells (OPCs) have extraordinary metabolic requirements during development as they differentiate to produce multiple myelin segments, implying that they must first secure adequate access to blood supply. However, mechanisms that coordinate myelination and angiogenesis are unclear. Here, we show that oxygen tension, mediated by OPC-encoded hypoxia-inducible factor (HIF) function, is an essential regulator of postnatal myelination. Constitutive HIF1/2α stabilization resulted in OPC maturation arrest through autocrine activation of canonical Wnt7a/7b. Surprisingly, such OPCs also show paracrine activity that induces excessive postnatal white matter angiogenesis in vivo and directly stimulates endothelial cell proliferation in vitro. Conversely, OPC-specific HIF1/2α loss of function leads to insufficient angiogenesis in corpus callosum and catastrophic axon loss. These findings indicate that OPC-intrinsic HIF signaling couples postnatal white matter angiogenesis, axon integrity, and the onset of myelination in mammalian forebrain.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Diferenciación Celular , Cuerpo Calloso/metabolismo , Células Endoteliales/citología , Técnicas In Vitro , Ratones , Neovascularización Fisiológica , Células-Madre Neurales , Oxígeno/metabolismo , Comunicación Paracrina , Proteínas Proto-Oncogénicas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas Wnt/metabolismo
4.
Cell ; 149(4): 899-911, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579290

RESUMEN

Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca's area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.


Asunto(s)
Corteza Cerebral/embriología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/embriología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Corteza Cerebral/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neurogénesis , Células Piramidales/metabolismo , Procesamiento Postranscripcional del ARN , Especificidad de la Especie
5.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35748297

RESUMEN

Oligodendrocytes, the myelinating cells of the central nervous system, possess great potential for disease modeling and cell transplantation-based therapies for leukodystrophies. However, caveats to oligodendrocyte differentiation protocols ( Ehrlich et al., 2017; Wang et al., 2013; Douvaras and Fossati, 2015) from human embryonic stem and induced pluripotent stem cells (iPSCs), which include slow and inefficient differentiation, and tumorigenic potential of contaminating undifferentiated pluripotent cells, are major bottlenecks towards their translational utility. Here, we report the rapid generation of human oligodendrocytes by direct lineage conversion of human dermal fibroblasts (HDFs). We show that the combination of the four transcription factors OLIG2, SOX10, ASCL1 and NKX2.2 is sufficient to convert HDFs to induced oligodendrocyte precursor cells (iOPCs). iOPCs resemble human primary and iPSC-derived OPCs based on morphology and transcriptomic analysis. Importantly, iOPCs can differentiate into mature myelinating oligodendrocytes in vitro and in vivo. Finally, iOPCs derived from patients with Pelizaeus Merzbacher disease, a hypomyelinating leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene, showed increased cell death compared with iOPCs from healthy donors. Thus, human iOPCs generated by direct lineage conversion represent an attractive new source for human cell-based disease models and potentially myelinating cell grafts.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Pelizaeus-Merzbacher , Diferenciación Celular/fisiología , Fibroblastos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Oligodendroglía/metabolismo , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Enfermedad de Pelizaeus-Merzbacher/terapia
7.
Nature ; 573(7772): 75-82, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31316211

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.


Asunto(s)
Linaje de la Célula , Esclerosis Múltiple/patología , Neuronas/patología , Adulto , Animales , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Criopreservación , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Esclerosis Múltiple/genética , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fagocitosis , ARN Nuclear Pequeño/análisis , ARN Nuclear Pequeño/genética , RNA-Seq , Transcriptoma/genética
8.
Nature ; 573(7772): 130-134, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31413369

RESUMEN

Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.


Asunto(s)
Células Madre Adultas/patología , Envejecimiento/patología , Sistema Nervioso Central/patología , Células Madre Multipotentes/patología , Nicho de Células Madre , Animales , Animales Recién Nacidos , Recuento de Células , Matriz Extracelular/patología , Femenino , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Oligodendroglía/patología , Ratas , Nicho de Células Madre/fisiología
9.
Glia ; 72(9): 1663-1673, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38924630

RESUMEN

Perinatal white matter injury (WMI) is the leading cause of long-term neurological morbidity in infants born preterm. Neuroinflammation during a critical window of early brain development plays a key role in WMI disease pathogenesis. The mechanisms linking inflammation with the long-term myelination failure that characterizes WMI, however, remain unknown. Here, we investigate the role of astrocyte reactivity in WMI. In an experimental mouse model of WMI, we demonstrate that WMI disease outcomes are improved in mutant mice lacking secretion of inflammatory molecules TNF-α, IL-1α, and C1q known, in addition to other roles, to induce the formation of a neuroinflammatory reactive astrocyte substate. We show that astrocytes express molecular signatures of the neuroinflammatory reactive astrocyte substate in both our WMI mouse model and human tissue affected by WMI, and that this gene expression pattern is dampened in injured mutant mice. Our data provide evidence that a neuroinflammatory reactive astrocyte substate correlates with adverse WMI disease outcomes, thus highlighting the need for further investigation of these cells as potential causal players in WMI pathology.


Asunto(s)
Animales Recién Nacidos , Astrocitos , Sustancia Blanca , Animales , Astrocitos/metabolismo , Astrocitos/patología , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Ratones , Humanos , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Ratones Endogámicos C57BL , Femenino , Modelos Animales de Enfermedad , Ratones Noqueados , Recién Nacido
10.
Trends Immunol ; 42(3): 228-247, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33593693

RESUMEN

Glial subtype diversity is an emerging topic in neurobiology and immune-mediated neurological diseases such as multiple sclerosis (MS). We discuss recent conceptual and technological advances that allow a better understanding of the transcriptomic and functional heterogeneity of oligodendrocytes (OLs), astrocytes, and microglial cells under inflammatory-demyelinating conditions. Recent single cell transcriptomic studies suggest the occurrence of novel homeostatic and reactive glial subtypes and provide insight into the molecular events during disease progression. Multiplexed RNA in situ hybridization has enabled 'mapping back' dysregulated gene expression to glial subtypes within the MS lesion microenvironment. These findings suggest novel homeostatic and reactive glial-cell-type functions both in immune-related processes and neuroprotection relevant to understanding the pathology of MS.


Asunto(s)
Esclerosis Múltiple , Astrocitos , Humanos , Microglía , Neuroglía , Oligodendroglía
11.
Cell ; 136(2): 322-36, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19167333

RESUMEN

The ubiquitin ligase anaphase-promoting complex (APC) recruits the coactivator Cdc20 to drive mitosis in cycling cells. However, the nonmitotic functions of Cdc20-APC have remained unexplored. We report that Cdc20-APC plays an essential role in dendrite morphogenesis in postmitotic neurons. Knockdown of Cdc20 in cerebellar slices and in postnatal rats in vivo profoundly impairs the formation of granule neuron dendrite arbors in the cerebellar cortex. Remarkably, Cdc20 is enriched at the centrosome in neurons, and the centrosomal localization is critical for Cdc20-dependent dendrite development. We also find that the centrosome-associated protein histone deacetylase 6 (HDAC6) promotes the polyubiquitination of Cdc20, stimulates the activity of centrosomal Cdc20-APC, and drives the differentiation of dendrites. These findings define a postmitotic function for Cdc20-APC in the morphogenesis of dendrites in the mammalian brain. The identification of a centrosomal Cdc20-APC ubiquitin signaling pathway holds important implications for diverse biological processes, including neuronal connectivity and plasticity.


Asunto(s)
Centrosoma/metabolismo , Corteza Cerebelosa/citología , Dendritas/metabolismo , Neuronas/citología , Transducción de Señal , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Técnicas In Vitro , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
12.
Cell ; 138(1): 172-85, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596243

RESUMEN

The transcriptional control of CNS myelin gene expression is poorly understood. Here we identify gene model 98, which we have named myelin gene regulatory factor (MRF), as a transcriptional regulator required for CNS myelination. Within the CNS, MRF is specifically expressed by postmitotic oligodendrocytes. MRF is a nuclear protein containing an evolutionarily conserved DNA binding domain homologous to a yeast transcription factor. Knockdown of MRF in oligodendrocytes by RNA interference prevents expression of most CNS myelin genes; conversely, overexpression of MRF within cultured oligodendrocyte progenitors or the chick spinal cord promotes expression of myelin genes. In mice lacking MRF within the oligodendrocyte lineage, premyelinating oligodendrocytes are generated but display severe deficits in myelin gene expression and fail to myelinate. These mice display severe neurological abnormalities and die because of seizures during the third postnatal week. These findings establish MRF as a critical transcriptional regulator essential for oligodendrocyte maturation and CNS myelination.


Asunto(s)
Encéfalo/citología , Regulación de la Expresión Génica , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Factores de Transcripción/metabolismo , Animales , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Ratones , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología
13.
Nature ; 563(7731): 347-353, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429548

RESUMEN

During early human pregnancy the uterine mucosa transforms into the decidua, into which the fetal placenta implants and where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-decidual interactions underlie common diseases of pregnancy, including pre-eclampsia and stillbirth. Here we profile the transcriptomes of about 70,000 single cells from first-trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals subsets of perivascular and stromal cells that are located in distinct decidual layers. There are three major subsets of decidual natural killer cells that have distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. Our data identify many regulatory interactions that prevent harmful innate or adaptive immune responses in this environment. Our single-cell atlas of the maternal-fetal interface reveals the cellular organization of the decidua and placenta, and the interactions that are critical for placentation and reproductive success.


Asunto(s)
Comunicación Celular , Feto/citología , Histocompatibilidad Materno-Fetal/inmunología , Placenta/citología , Placenta/metabolismo , Embarazo/inmunología , Análisis de la Célula Individual , Comunicación Celular/inmunología , Diferenciación Celular/genética , Decidua/citología , Decidua/inmunología , Decidua/metabolismo , Femenino , Feto/inmunología , Feto/metabolismo , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Ligandos , Placenta/inmunología , ARN Citoplasmático Pequeño/genética , Análisis de Secuencia de ARN , Células del Estroma/citología , Células del Estroma/metabolismo , Transcriptoma , Trofoblastos/citología , Trofoblastos/inmunología , Trofoblastos/metabolismo
14.
Nature ; 541(7638): 481-487, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28099414

RESUMEN

Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer's, Huntington's and Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.


Asunto(s)
Astrocitos/clasificación , Astrocitos/patología , Muerte Celular , Sistema Nervioso Central/patología , Microglía/patología , Neuronas/patología , Animales , Astrocitos/metabolismo , Axotomía , Técnicas de Cultivo de Célula , Supervivencia Celular , Complemento C1q/metabolismo , Progresión de la Enfermedad , Humanos , Inflamación/patología , Interleucina-1alfa/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Enfermedades Neurodegenerativas/patología , Oligodendroglía/patología , Fagocitosis , Fenotipo , Ratas , Ratas Sprague-Dawley , Sinapsis/patología , Toxinas Biológicas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Nat Rev Neurosci ; 18(1): 31-41, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27904142

RESUMEN

Although it is well established that all brain regions contain various neuronal subtypes with different functions, astrocytes have traditionally been thought to be homogenous. However, recent evidence has shown that astrocytes in the mammalian CNS display distinct inter- and intra-regional features, as well as functional diversity. In the CNS, astrocyte processes fill the local environment in non-overlapping domains. Therefore, a potential advantage of region-specified astrocytes might be their capacity to regulate local development or optimize local neural circuit function. An overview of the regional heterogeneity of neuron-astrocyte interactions indicates novel ways in which they could regulate normal neurological function and shows how they might become dysregulated in disease.


Asunto(s)
Astrocitos/fisiología , Encéfalo/fisiología , Comunicación Celular/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Humanos , Mamíferos
16.
Glia ; 69(12): 2812-2827, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34396578

RESUMEN

Glutamine synthetase (GS) is a key enzyme that metabolizes glutamate into glutamine. While GS is highly enriched in astrocytes, expression in other glial lineages has been noted. Using a combination of reporter mice and cell type-specific markers, we show that GS is expressed in myelinating oligodendrocytes (OL) but not oligodendrocyte progenitor cells of the mouse and human ventral spinal cord. To investigate the role of GS in mature OL, we used a conditional knockout (cKO) approach to selectively delete GS-encoding gene (Glul) in OL, which caused a significant decrease in glutamine levels on mouse spinal cord extracts. GS cKO mice (CNP-cre+ :Glulfl/fl ) showed no differences in motor neuron numbers, size or axon density; OL differentiation and myelination in the ventral spinal cord was normal up to 6 months of age. Interestingly, GS cKO mice showed a transient and specific decrease in peak force while locomotion and motor coordination remained unaffected. Last, GS expression in OL was increased in chronic pathological conditions in both mouse and humans. We found a disease-stage dependent increase of OL expressing GS in the ventral spinal cord of SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Moreover, we showed that GLUL transcripts levels were increased in OL in leukocortical tissue from multiple sclerosis but not control patients. These findings provide evidence towards OL-encoded GS function in spinal cord sensorimotor axis, which is dysregulated in chronic neurological diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Glutamato-Amoníaco Ligasa , Oligodendroglía , Médula Espinal , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
17.
Pediatr Res ; 90(6): 1161-1170, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33654279

RESUMEN

BACKGROUND: Neonatal stroke affects 1 in 2800 live births and is a major cause of neurological injury. The Sonic hedgehog (Shh) signaling pathway is critical for central nervous system (CNS) development and has neuroprotective and reparative effects in different CNS injury models. Previous studies have demonstrated beneficial effects of small molecule Shh-Smoothened agonist (SAG) against neonatal cerebellar injury and it improves Down syndrome-related brain structural deficits in mice. Here we investigated SAG neuroprotection in rat models of neonatal ischemia-reperfusion (stroke) and adult focal white matter injury. METHODS: We used transient middle cerebral artery occlusion at P10 and ethidium bromide (EB) injection in adult rats to induce damage. Following surgery and SAG or vehicle treatment, we analyzed tissue loss, cell proliferation and fate, and behavioral outcome. RESULTS: We report that a single dose of SAG administered following neonatal stroke preserved brain volume, reduced gliosis, enhanced oligodendrocyte progenitor cell (OPC) and EC proliferation, and resulted in long-term cognitive improvement. Single-dose SAG also promoted proliferation of OPCs following focal demyelination in the adult rat. CONCLUSIONS: These findings indicate benefit of one-time SAG treatment post insult in reducing brain injury and improving behavioral outcome after experimental neonatal stroke. IMPACT: A one-time dose of small molecule Sonic hedgehog agonist protected against neonatal stroke and improved long-term behavioral outcomes in a rat model. This study extends the use of Sonic hedgehog in treating developing brain injury, previously shown in animal models of Down syndrome and cerebellar injury. Sonic hedgehog agonist is one of the most promising therapies in treating neonatal stroke thanks to its safety profile and low dosage.


Asunto(s)
Proteínas Hedgehog/antagonistas & inhibidores , Fármacos Neuroprotectores/uso terapéutico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Accidente Cerebrovascular/prevención & control , Animales , Conducta Animal , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Infarto de la Arteria Cerebral Media/complicaciones , Ratones , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/etiología
18.
Glia ; 68(4): 685-704, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926040

RESUMEN

Human astrocytes provide trophic as well as structural support to the surrounding brain cells. Furthermore, they have been implicated in many physiological processes important for central nervous system function. Traditionally astrocytes have been considered to be a homogeneous class of cells, however, it has increasingly become more evident that astrocytes can have very different characteristics in different regions of the brain, or even within the same region. In this review we will discuss the features of human astrocytes, their heterogeneity, and their generation during neurodevelopment and the extraordinary progress that has been made to model these fascinating cells in vitro, mainly from induced pluripotent stem cells. Astrocytes' role in disease will also be discussed with a particular focus on their role in neurodegenerative disorders. As outlined here, astrocytes are important for the homeostasis of the central nervous system and understanding their regional specificity is a priority to elucidate the complexity of the human brain.


Asunto(s)
Astrocitos/fisiología , Encéfalo/fisiología , Diferenciación Celular/fisiología , Enfermedades Neurodegenerativas/patología , Astrocitos/citología , Encéfalo/citología , Humanos
19.
Brain ; 142(12): 3806-3833, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665242

RESUMEN

Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/ß-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.


Asunto(s)
Encéfalo/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Animales Modificados Genéticamente , Barrera Hematoencefálica/metabolismo , Células Cultivadas , Biología Computacional , Humanos , Ratones , Pez Cebra
20.
Phys Chem Chem Phys ; 22(26): 14976-14982, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32588846

RESUMEN

Machine learning is a valuable tool in the development of chemical technologies but its applications into supramolecular chemistry have been limited. Here, the utility of kernel-based support vector machine learning using density functional theory calculations as training data is evaluated when used to predict equilibrium binding coefficients of small molecules with cucurbit[7]uril (CB[7]). We find that utilising SVMs may confer some predictive ability. This algorithm was then used to predict the binding of drugs TAK-580 and selumetinib. The algorithm did predict strong binding for TAK-580 and poor binding for selumetinib, and these results were experimentally validated. It was discovered that the larger homologue cucurbit[8]uril (CB[8]) is partial to selumetinib, suggesting an opportunity for tunable release by introducing different concentrations of CB[7] or CB[8] into a hydrogel depot. We qualitatively demonstrated that these drugs may have utility in combination against gliomas. Finally, mass transfer simulations show CB[7] can independently tune the release of TAK-580 without affecting selumetinib. This work gives specific evidence that a machine learning approach to recognition of small molecules by macrocycles has merit and reinforces the view that machine learning may prove valuable in the development of drug delivery systems and supramolecular chemistry more broadly.


Asunto(s)
Bencimidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Compuestos Heterocíclicos con 3 Anillos/química , Imidazoles/química , Teoría Funcional de la Densidad , Modelos Químicos , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA