Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 88(7): 3766-75, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24429372

RESUMEN

UNLABELLED: The nucleocapsid of a negative-strand RNA virus is assembled with a single nucleocapsid protein and the viral genomic RNA. The nucleocapsid protein polymerizes along the length of the single-strand genomic RNA (viral RNA) or its cRNA. This process of encapsidation occurs concomitantly with genomic replication. Structural comparisons of several nucleocapsid-like particles show that the mechanism of RNA encapsidation in negative-strand RNA viruses has many common features. Fundamentally, there is a unifying mechanism to keep the capsid protein protomer monomeric prior to encapsidation of viral RNA. In the nucleocapsid, there is a cavity between two globular domains of the nucleocapsid protein where the viral RNA is sequestered. The viral RNA must be transiently released from the nucleocapsid in order to reveal the template RNA sequence for transcription/replication. There are cross-molecular interactions among the protein subunits linearly along the nucleocapsid to stabilize its structure. Empty capsids can form in the absence of RNA. The common characteristics of RNA encapsidation not only delineate the evolutionary relationship of negative-strand RNA viruses but also provide insights into their mechanism of replication. IMPORTANCE: What separates negative-strand RNA viruses (NSVs) from the rest of the virosphere is that the nucleocapsid of NSVs serves as the template for viral RNA synthesis. Their viral RNA-dependent RNA polymerase can induce local conformational changes in the nucleocapsid to temporarily release the RNA genome so that the viral RNA-dependent RNA polymerase can use it as the template for RNA synthesis during both transcription and replication. After RNA synthesis at the local region is completed, the viral RNA-dependent RNA polymerase processes downstream, and the RNA genome is restored in the nucleocapsid. We found that the nucleocapsid assembly of all NSVs shares three essential elements: a monomeric capsid protein protomer, parallel orientation of subunits in the linear nucleocapsid, and a (5H + 3H) motif that forms a proper cavity for sequestration of the RNA. This observation also suggests that all NSVs evolved from a common ancestor that has this unique nucleocapsid.


Asunto(s)
Virus ARN/fisiología , Ensamble de Virus , Modelos Moleculares , Nucleocápside/química , Nucleocápside/metabolismo , Conformación Proteica , Multimerización de Proteína , ARN Viral/metabolismo , Replicación Viral
2.
J Virol ; 85(6): 2714-22, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21177817

RESUMEN

The genomic RNA of negative-strand RNA viruses, such as vesicular stomatitis virus (VSV), is completely enwrapped by the nucleocapsid protein (N) in every stage of virus infection. During viral transcription/replication, however, the genomic RNA in the nucleocapsid must be accessible by the virus-encoded RNA-dependent RNA polymerase in order to serve as the template for RNA synthesis. With the VSV nucleocapsid and a nucleocapsid-like particle (NLP) produced in Escherichia coli, we have found that the RNA in the VSV nucleocapsid can be removed by RNase A, in contrast to what was previously reported. Removal of the RNA did not disrupt the assembly of the N protein, resulting in an empty capsid. Polyribonucleotides were reencapsidated into the empty NLP, and the crystal structures were determined. The crystal structures revealed variable degrees of association of the N protein with a specific RNA sequence.


Asunto(s)
Nucleocápside/fisiología , ARN Viral/metabolismo , Vesiculovirus/fisiología , Escherichia coli , Proteínas de la Nucleocápside/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo , Ribonucleasa Pancreática/metabolismo
3.
Elife ; 112022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35924897

RESUMEN

Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.


Asunto(s)
Proteína Fosfatasa 2 , Microscopía por Crioelectrón , Desmetilación , Holoenzimas/metabolismo , Metilación , Proteína Fosfatasa 2/metabolismo
4.
Nat Commun ; 9(1): 3830, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224630

RESUMEN

In the original version of this Article, the title of the legend to Fig. 7 incorrectly read 'Knockdown of B55α increases breast cancer metastasis' instead of 'Knockdown of B55α decreases breast cancer metastasis'. This has now been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 9(1): 1047, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535359

RESUMEN

Eya genes encode a unique family of multifunctional proteins that serve as transcriptional co-activators and as haloacid dehalogenase-family Tyr phosphatases. Intriguingly, the N-terminal domain of Eyas, which does not share sequence similarity to any known phosphatases, contains a separable Ser/Thr phosphatase activity. Here, we demonstrate that the Ser/Thr phosphatase activity of Eya is not intrinsic, but arises from its direct interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme. Importantly, Eya3 alters the regulation of c-Myc by PP2A, increasing c-Myc stability by enabling PP2A-B55α to dephosphorylate pT58, in direct contrast to the previously described PP2A-B56α-mediated dephosphorylation of pS62 and c-Myc destabilization. Furthermore, Eya3 and PP2A-B55α promote metastasis in a xenograft model of breast cancer, opposing the canonical tumor suppressive function of PP2A-B56α. Our study identifies Eya3 as a regulator of PP2A, a major cellular Ser/Thr phosphatase, and uncovers a mechanism of controlling the stability of a critical oncogene, c-Myc.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Inmunohistoquímica , Espectrometría de Masas , Ratones , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/genética , Estabilidad Proteica , Proteínas Tirosina Fosfatasas/genética , Proteínas Proto-Oncogénicas c-myc/genética
6.
Nat Commun ; 8(1): 2272, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273778

RESUMEN

Dynamic assembly/disassembly of signaling complexes are crucial for cellular functions. Specialized latency and activation chaperones control the biogenesis of protein phosphatase 2A (PP2A) holoenzymes that contain a common scaffold and catalytic subunits and a variable regulatory subunit. Here we show that the butterfly-shaped TIPRL (TOR signaling pathway regulator) makes highly integrative multibranching contacts with the PP2A catalytic subunit, selective for the unmethylated tail and perturbing/inactivating the phosphatase active site. TIPRL also makes unusual wobble contacts with the scaffold subunit, allowing TIPRL, but not the overlapping regulatory subunits, to tolerate disease-associated PP2A mutations, resulting in reduced holoenzyme assembly and enhanced inactivation of mutant PP2A. Strikingly, TIPRL and the latency chaperone, α4, coordinate to disassemble active holoenzymes into latent PP2A, strictly controlled by methylation. Our study reveals a mechanism for methylation-responsive inactivation and holoenzyme disassembly, illustrating the complexity of regulation/signaling, dynamic complex disassembly, and disease mutations in cancer and intellectual disability.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Dominio Catalítico , Cristalización , Células HEK293 , Holoenzimas , Humanos , Metilación , Ratones , Chaperonas Moleculares , Transducción de Señal
7.
Cell Discov ; 3: 17027, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28884018

RESUMEN

Protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase; it forms diverse heterotrimeric holoenzymes that counteract kinase actions. Using a peptidome that tiles the disordered regions of the human proteome, we identified proteins containing [LMFI]xx[ILV]xEx motifs that serve as interaction sites for B'-family PP2A regulatory subunits and holoenzymes. The B'-binding motifs have important roles in substrate recognition and in competitive inhibition of substrate binding. With more than 100 novel ligands identified, we confirmed that the recently identified LxxIxEx B'α-binding motifs serve as common binding sites for B' subunits with minor variations, and that S/T phosphorylation or D/E residues at positions 2, 7, 8 and 9 of the motifs reinforce interactions. Hundreds of proteins in the human proteome harbor intrinsic or phosphorylation-responsive B'-interaction motifs, and localize at distinct cellular organelles, such as midbody, predicting kinase-facilitated recruitment of PP2A-B' holoenzymes for tight spatiotemporal control of phosphorylation at mitosis and cytokinesis. Moroever, Polo-like kinase 1-mediated phosphorylation of Cyk4/RACGAP1, a centralspindlin component at the midbody, facilitates binding of both RhoA guanine nucleotide exchange factor (epithelial cell transforming sequence 2 (Ect2)) and PP2A-B' that in turn dephosphorylates Cyk4 and disrupts Ect2 binding. This feedback signaling loop precisely controls RhoA activation and specifies a restricted region for cleavage furrow ingression. Our results provide a framework for further investigation of diverse signaling circuits formed by PP2A-B' holoenzymes in various cellular processes.

8.
ACS Infect Dis ; 2(1): 47-53, 2016 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-27622947

RESUMEN

During cell entry of an enveloped virus, the viral membrane must be fused with the cellular membrane. The virus envelope has a unique structure consisting of viral proteins and a virus-specific lipid composition, whereas the host membrane has its own structure with host membrane proteins. Compound 136 was previously found to bind in close proximity to the viral envelope and inhibit influenza virus entry. We showed here that the 136-treated influenza virus still caused hemolysis. When liposomes were used as the target membrane for 136-treated viruses, aberrant fusion occurred; few liposomes fused per virion, and glycoproteins were not distributed evenly across fusion complexes. Additionally, large fusion aggregates did not form, and in some instances, neck-like structures were found. Based on previous results and hemolysis, fusion inhibition by 136 occurs post-scission but prior to lipid mixing.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/metabolismo , Inhibidores de Proteínas Virales de Fusión/farmacología , Proteínas Virales de Fusión/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Liposomas/metabolismo , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo
9.
PLoS One ; 10(3): e0122536, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803288

RESUMEN

New inhibitors of influenza viruses are needed to combat the potential emergence of novel human influenza viruses. We have identified a class of small molecules that inhibit replication of influenza virus at picomolar concentrations in plaque reduction assays. The compound also inhibits replication of vesicular stomatitis virus. Time of addition and dilution experiments with influenza virus indicated that an early time point of infection was blocked and that inhibitor 136 tightly bound to virions. Using fluorescently labeled influenza virus, inhibition of viral fusion to cellular membranes by blocked lipid mixing was established as the mechanism of action for this class of inhibitors. Stabilization of the neutral pH form of hemagglutinin (HA) was ruled out by trypsin digestion studies in vitro and with conformation specific HA antibodies within cells. Direct visualization of 136 treated influenza virions at pH 7.5 or acidified to pH 5.0 showed that virions remain intact and that glycoproteins become disorganized as expected when HA undergoes a conformational change. This suggests that exposure of the fusion peptide at low pH is not inhibited but lipid mixing is inhibited, a different mechanism than previously reported fusion inhibitors. We hypothesize that this new class of inhibitors intercalate into the virus envelope altering the structure of the viral envelope required for fusion to cellular membranes.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Norbornanos/farmacología , Tiazolidinas/farmacología , Inhibidores de Proteínas Virales de Fusión/farmacología , Virión/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Perros , Electroforesis en Gel de Poliacrilamida , Fluorescencia , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Células de Riñón Canino Madin Darby , Microscopía Electrónica , Norbornanos/metabolismo , Sales de Tetrazolio , Tiazoles , Tiazolidinas/metabolismo , Tripsina , Ensayo de Placa Viral , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA