RESUMEN
The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.
Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Humanos , Mutación , Pandemias , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
The thalamus has a key role in mediating cortical-subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established. Here, we review current and emerging methods for thalamic nuclei segmentation in neuroimaging data and consider the limitations of existing techniques in terms of their research and clinical applicability. We address these challenges by proposing a roadmap to improve thalamic nuclei segmentation in human neuroimaging and, in turn, harmonize research approaches and advance clinical applications. We believe that a collective effort is required to achieve this. We hope that this will ultimately lead to the thalamic nuclei being regarded as key brain regions in their own right and not (as often currently assumed) as simply a gateway between cortical and subcortical regions.
RESUMEN
The importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters' uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.
Asunto(s)
Anomalías Congénitas/genética , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Ferredoxina-NADP Reductasa/genética , Retardo del Crecimiento Fetal/genética , Ácido Fólico/metabolismo , Animales , Cruzamientos Genéticos , Metilación de ADN , Femenino , Ferredoxina-NADP Reductasa/metabolismo , Masculino , Ratones , MutaciónRESUMEN
Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.
Asunto(s)
Antibacterianos , Bacterias , Membrana Celular , Depsipéptidos , Viabilidad Microbiana , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/citología , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Depsipéptidos/química , Depsipéptidos/farmacología , Difosfatos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Lípidos/química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Pirrolidinas/química , Azúcares/químicaRESUMEN
Armoured dinosaurs are well known for their evolution of specialized tail weapons-paired tail spikes in stegosaurs and heavy tail clubs in advanced ankylosaurs1. Armoured dinosaurs from southern Gondwana are rare and enigmatic, but probably include the earliest branches of Ankylosauria2-4. Here we describe a mostly complete, semi-articulated skeleton of a small (approximately 2 m) armoured dinosaur from the late Cretaceous period of Magallanes in southernmost Chile, a region that is biogeographically related to West Antarctica5. Stegouros elengassen gen. et sp. nov. evolved a large tail weapon unlike any dinosaur: a flat, frond-like structure formed by seven pairs of laterally projecting osteoderms encasing the distal half of the tail. Stegouros shows ankylosaurian cranial characters, but a largely ancestral postcranial skeleton, with some stegosaur-like characters. Phylogenetic analyses placed Stegouros in Ankylosauria; specifically, it is related to Kunbarrasaurus from Australia6 and Antarctopelta from Antarctica7, forming a clade of Gondwanan ankylosaurs that split earliest from all other ankylosaurs. The large osteoderms and specialized tail vertebrae in Antarctopelta suggest that it had a tail weapon similar to Stegouros. We propose a new clade, the Parankylosauria, to include the first ancestor of Stegouros-but not Ankylosaurus-and all descendants of that ancestor.
Asunto(s)
Agresión , Dinosaurios/anatomía & histología , Dinosaurios/fisiología , Fósiles , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/fisiología , Animales , Regiones Antárticas , Chile , Conducta Predatoria , EsqueletoRESUMEN
We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.
Asunto(s)
Arterias , Benchmarking , Perfusión , Hipocampo/diagnóstico por imagen , Imagen por Resonancia MagnéticaRESUMEN
Lymphocyte activation gene 3 (LAG3) is an inhibitory receptor that plays a critical role in controlling T cell tolerance and autoimmunity and is a major immunotherapeutic target. LAG3 is expressed on the cell surface as a homodimer but the functional relevance of this is unknown. In this study, we show that the association between the TCR/CD3 complex and a murine LAG3 mutant that cannot dimerize is perturbed in CD8+ T cells. We also show that LAG3 dimerization is required for optimal inhibitory function in a B16-gp100 tumor model. Finally, we demonstrate that a therapeutic LAG3 Ab, C9B7W, which does not block LAG3 interaction with its cognate ligand MHC class II, disrupts LAG3 dimerization and its association with the TCR/CD3 complex. These studies highlight the functional importance of LAG3 dimerization and offer additional approaches to therapeutically target LAG3.
Asunto(s)
Antígenos CD , Linfocitos T CD8-positivos , Proteína del Gen 3 de Activación de Linfocitos , Multimerización de Proteína , Animales , Ratones , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos CD/genética , Linfocitos T CD8-positivos/inmunología , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Complejo Receptor-CD3 del Antígeno de Linfocito T/inmunología , Complejo CD3/inmunología , Humanos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Activación de Linfocitos/inmunología , Unión ProteicaRESUMEN
Lymphocyte activation gene 3 protein (LAG3) is an immune checkpoint receptor that is highly upregulated on exhausted T cells in the tumor microenvironment. LAG3 transmits inhibitory signals to T cells upon binding to MHC class II and other ligands, rendering T cells dysfunctional. Consequently, LAG3 is a major target for cancer immunotherapy with many anti-LAG3 monoclonal antibodies (mAbs) that block LAG3 inhibitory activity in clinical trials. In this review, we examine the molecular basis for LAG3 function in light of recently determined crystal and cryoEM structures of this inhibitory receptor. We review what is known about LAG3 interactions with MHC class II, its canonical ligand, and the newly discovered ligands FGL1 and the T cell receptor (TCR)-CD3 complex, including current controversies over the relative importance of these ligands. We then address the development and mechanisms of action of anti-LAG3 mAbs in clinical trials for cancer immunotherapy. We discuss new strategies to therapeutically target LAG3 using mAbs that not only block the LAG3-MHC class II interaction, but also LAG3 interactions with FGL1 or TCR-CD3, or that disrupt LAG3 dimerization. Finally, we assess the possibility of developing mAbs that enhance, rather than block, LAG3 inhibitory activity as treatments for autoimmune diseases.
Asunto(s)
Antígenos CD , Inmunoterapia , Proteína del Gen 3 de Activación de Linfocitos , Neoplasias , Animales , Humanos , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos CD/química , Inmunoterapia/métodos , Proteína del Gen 3 de Activación de Linfocitos/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/químicaRESUMEN
The capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e., clonal diversity, somatic hypermutation, and germline gene usage). However, it remains unclear if clonal selection and expansion of PCs follow any deterministic rules or are stochastic with regards to phenotypic antibody properties (i.e., antigen-binding, affinity, and epitope specificity). Here, we report on the in-depth genotypic and phenotypic characterization of clonally expanded PC antibody repertoires following protein immunization. We find that clonal expansion drives antigen specificity of the most expanded clones (top â¼10), whereas among the rest of the clonal repertoire antigen specificity is stochastic. Furthermore, we report both on a polyclonal repertoire and clonal lineage level that antibody-antigen binding affinity does not correlate with clonal expansion or somatic hypermutation. Last, we provide evidence for convergence toward targeting dominant epitopes despite clonal sequence diversity among the most expanded clones. Our results highlight the extent to which clonal expansion can be ascribed to antigen binding, affinity, and epitope specificity, and they have implications for the assessment of effective vaccines.
Asunto(s)
Antígenos , Células Plasmáticas , Animales , Anticuerpos/genética , Afinidad de Anticuerpos , Epítopos/genética , RatonesRESUMEN
SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.
Asunto(s)
Anticuerpos ampliamente neutralizantes , Anticuerpos contra la Hepatitis C , Hepatitis C , Inmunogenicidad Vacunal , Proteínas del Envoltorio Viral , Vacunas contra Hepatitis Viral , Animales , Anticuerpos ampliamente neutralizantes/biosíntesis , Anticuerpos ampliamente neutralizantes/sangre , Hepatitis C/prevención & control , Anticuerpos contra la Hepatitis C/biosíntesis , Anticuerpos contra la Hepatitis C/sangre , Ratones , Multimerización de Proteína , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/inmunologíaRESUMEN
T cells play a crucial role in combatting SARS-CoV-2 and forming long-term memory responses to this coronavirus. The emergence of SARS-CoV-2 variants that can evade T cell immunity has raised concerns about vaccine efficacy and the risk of reinfection. Some SARS-CoV-2 T cell epitopes elicit clonally restricted CD8+ T cell responses characterized by T cell receptors (TCRs) that lack structural diversity. Mutations in such epitopes can lead to loss of recognition by most T cells specific for that epitope, facilitating viral escape. Here, we studied an HLA-A2-restricted spike protein epitope (RLQ) that elicits CD8+ T cell responses in COVID-19 convalescent patients characterized by highly diverse TCRs. We previously reported the structure of an RLQ-specific TCR (RLQ3) with greatly reduced recognition of the most common natural variant of the RLQ epitope (T1006I). Opposite to RLQ3, TCR RLQ7 recognizes T1006I with even higher functional avidity than the WT epitope. To explain the ability of RLQ7, but not RLQ3, to tolerate the T1006I mutation, we determined structures of RLQ7 bound to RLQ-HLA-A2 and T1006I-HLA-A2. These complexes show that there are multiple structural solutions to recognizing RLQ and thereby generating a clonally diverse T cell response to this epitope that assures protection against viral escape and T cell clonal loss.
Asunto(s)
COVID-19 , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Humanos , Linfocitos T CD8-positivos , COVID-19/inmunología , Epítopos de Linfocito T , Antígeno HLA-A2 , Receptores de Antígenos de Linfocitos T/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
Lipids adhere to membrane proteins to stimulate or suppress molecular and ionic transport and signal transduction. Yet, the molecular details of lipid-protein interaction and their functional impact are poorly characterized. Here we combine NMR, coarse-grained molecular dynamics (CGMD), and functional assays to reveal classic cooperativity in the binding and subsequent activation of a bacterial inward rectifier potassium (Kir) channel by phosphatidylglycerol (PG), a common component of many membranes. Past studies of lipid activation of Kir channels focused primarily on phosphatidylinositol bisphosphate, a relatively rare signaling lipid that is tightly regulated in space and time. We use solid-state NMR to quantify the binding of unmodified 13C-PG to the K+ channel KirBac1.1 in liposomes. This specific lipid-protein interaction has a dissociation constant (Kd) of â¼7 mol percentage PG (ΧPG) with positive cooperativity (n = 3.8) and approaches saturation near 20% ΧPG. Liposomal flux assays show that K+ flux also increases with PG in a cooperative manner with an EC50 of â¼20% ΧPG, within the physiological range. Further quantitative fitting of these data reveals that PG acts as a partial (80%) agonist with fivefold K+ flux amplification. Comparisons of NMR chemical shift perturbation and CGMD simulations at different ΧPG confirm the direct interaction of PG with key residues, several of which would not be accessible to lipid headgroups in the closed state of the channel. Allosteric regulation by a common lipid is directly relevant to the activation mechanisms of several human ion channels. This study highlights the role of concentration-dependent lipid-protein interactions and tightly controlled protein allostery in the activation and regulation of ion channels.
Asunto(s)
Canales de Potasio de Rectificación Interna , Humanos , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Liposomas , Proteínas de la Membrana/metabolismo , Lípidos , Espectroscopía de Resonancia MagnéticaRESUMEN
The basal forebrain cholinergic neurons provide acetylcholine to the cortex via large projections. Recent molecular imaging work in humans indicates that the cortical cholinergic innervation is not uniformly distributed, but rather may disproportionately innervate cortical areas relevant to supervisory attention. In this study, we therefore reexamined the spatial relationship between acetylcholinergic modulation and attention in the human cortex using meta-analytic strategies targeting both pharmacological and non-pharmacological neuroimaging studies. We found that pharmaco-modulation of acetylcholine evoked both increased activity in the anterior cingulate and decreased activity in the opercular and insular cortex. In large independent meta-analyses of non-pharmacological neuroimaging research, we demonstrate that during attentional engagement these cortical areas exhibit (1) task-related co-activation with the basal forebrain, (2) task-related co-activation with one another, and (3) spatial overlap with dense cholinergic innervations originating from the basal forebrain, as estimated by multimodal positron emission tomography and magnetic resonance imaging. Finally, we provide meta-analytic evidence that pharmaco-modulation of acetylcholine also induces a speeding of responses to targets with no apparent tradeoff in accuracy. In sum, we demonstrate in humans that acetylcholinergic modulation of midcingulo-insular hubs of the ventral attention/salience network via basal forebrain afferents may coordinate selection of task relevant information, thereby facilitating cognition and behavior.
Asunto(s)
Acetilcolina , Atención , Humanos , Cognición/fisiología , Neuroimagen , Colinérgicos/farmacologíaRESUMEN
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
RESUMEN
Cryptogenic stroke refers to a stroke of undetermined etiology. It accounts for approximately one-fifth of ischemic strokes and has a higher prevalence in younger patients. Embolic stroke of undetermined source (ESUS) refers to a subgroup of patients with nonlacunar cryptogenic strokes in whom embolism is the suspected stroke mechanism. Under the classifications of cryptogenic stroke or ESUS, there is wide heterogeneity in possible stroke mechanisms. In the absence of a confirmed stroke etiology, there is no established treatment for secondary prevention of stroke in patients experiencing cryptogenic stroke or ESUS, despite several clinical trials, leaving physicians with a clinical dilemma. Both conventional and advanced MRI techniques are available in clinical practice to identify differentiating features and stroke patterns and to determine or infer the underlying etiologic cause, such as atherosclerotic plaques and cardiogenic or paradoxical embolism due to occult pelvic venous thrombi. The aim of this review is to highlight the diagnostic utility of various MRI techniques in patients with cryptogenic stroke or ESUS. Future trends in technological advancement for promoting the adoption of MRI in such a special clinical application are also discussed.
Asunto(s)
Accidente Cerebrovascular Embólico , Imagen por Resonancia Magnética , Humanos , Accidente Cerebrovascular Embólico/diagnóstico por imagen , Accidente Cerebrovascular Embólico/etiología , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/etiologíaRESUMEN
This manuscript represents a republication of a manuscript originally published in STH in 1995. This republication is to help celebrate 50 years of publishing for STH. The original abstract follows.A new in vitro system for the detection of platelet dysfunction, PFA-100®, has been developed. It provides a quantitative measure of platelet function in anticoagulated whole blood. The system comprises a microprocessor-controlled instrument and a disposable test cartridge containing a biologically active membrane. The instrument aspirates a blood sample under constant vacuum from the sample reservoir through a capillary and a microscopic aperture cut into the membrane. The membrane is coated with collagen and epinephrine or adenosine 5'-diphosphate. The presence of these biochemical stimuli, and the high shear rates generated under the standardized flow conditions, result in platelet attachment, activation, and aggregation, slowly building a stable platelet plug at the aperture. The time required to obtain full occlusion of the aperture is reported as the "closure time." We have found that impairment of von Willebrand factor, or inhibition of platelet receptors glycoprotein Ib or IIb/IIIa with monoclonal antibodies or peptides, resulted in abnormal closure times. An antifibrinogen antibody, in contrast, failed to show any effect. The test appears to be sensitive to platelet adherence and aggregation abnormalities. The PFA-100® system has potential applications in routine evaluation of platelet function in the clinical setting because of its accuracy, case of operation, and rapid turnaround of results.
Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Pruebas de Función Plaquetaria , Humanos , Pruebas de Función Plaquetaria/métodos , Plaquetas/fisiología , Hemostasis , Pruebas de Coagulación Sanguínea , Agregación PlaquetariaRESUMEN
The hexatic phase is an intermediate stage in the melting process of a 2D crystal due to topological defects. Recently, this exotic phase was experimentally identified in the vortex lattice of 2D weakly disordered superconducting MoGe by scanning tunneling microscopic measurements. Here, we study this vortex state by the Nernst effect, which is an effective and sensitive tool to detect vortex motion, especially in the superconducting fluctuation regime. We find a surprising Nernst sign reversal at the melting transition of the hexatic phase. We propose that they are a consequence of vortex dislocations in the hexatic state which diffuse preferably from the cold to hot.
RESUMEN
BACKGROUND: As clinical practices with lithium salts for patients diagnosed with bipolar disorder (BD) are poorly documented in Asia, we studied the prevalence and clinical correlates of lithium use there to support international comparisons. METHODS: We conducted a cross-sectional study of use and dosing of lithium salts for BD patients across 13 Asian sites and evaluated bivariate relationships of lithium treatment with clinical correlates followed by multivariate logistic regression modeling. RESULTS: In a total of 2139 BD participants (52.3% women) of mean age 42.4 years, lithium salts were prescribed in 27.3% of cases overall, varying among regions from 3.20% to 59.5%. Associated with lithium treatment were male sex, presence of euthymia or mild depression, and a history of seasonal mood change. Other mood stabilizers usually were given with lithium, often at relatively high doses. Lithium use was associated with newly emerging and dose-dependent risk of tremors as well as risk of hypothyroidism. We found no significant differences in rates of clinical remission or of suicidal behavior if treatment included lithium or not. CONCLUSIONS: Study findings clarify current prevalence, dosing, and clinical correlates of lithium treatment for BD in Asia. This information should support clinical decision-making regarding treatment of BD patients and international comparisons of therapeutic practices.
Asunto(s)
Trastorno Bipolar , Humanos , Masculino , Femenino , Adulto , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/epidemiología , Trastorno Bipolar/inducido químicamente , Litio/uso terapéutico , Estudios Transversales , Farmacoepidemiología , Sales (Química)/uso terapéutico , Antimaníacos/uso terapéutico , Compuestos de Litio/uso terapéuticoRESUMEN
Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.
Asunto(s)
Péptidos , Péptidos/química , Alanina/química , Estereoisomerismo , Células Artificiales/química , Leucina/química , Origen de la Vida , Dipéptidos/químicaRESUMEN
Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.