Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Blood ; 122(3): 376-85, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23723449

RESUMEN

The evolutionarily conserved aryl hydrocarbon receptor (AhR) has been studied for its role in environmental chemical-induced toxicity. However, recent studies have demonstrated that the AhR may regulate the hematopoietic and immune systems during development in a cell-specific manner. These results, together with the absence of an in vitro model system enabling production of large numbers of primary human hematopoietic progenitor cells (HPs) capable of differentiating into megakaryocyte- and erythroid-lineage cells, motivated us to determine if AhR modulation could facilitate both progenitor cell expansion and megakaryocyte and erythroid cell differentiation. Using a novel, pluripotent stem cell-based, chemically-defined, serum and feeder cell-free culture system, we show that the AhR is expressed in HPs and that, remarkably, AhR activation drives an unprecedented expansion of HPs, megakaryocyte-lineage cells, and erythroid-lineage cells. Further AhR modulation within rapidly expanding progenitor cell populations directs cell fate, with chronic AhR agonism permissive to erythroid differentiation and acute antagonism favoring megakaryocyte specification. These results highlight the development of a new Good Manufacturing Practice-compliant platform for generating virtually unlimited numbers of human HPs with which to scrutinize red blood cell and platelet development, including the assessment of the role of the AhR critical cell fate decisions during hematopoiesis.


Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Apoptosis/efectos de los fármacos , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Carbazoles/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP1B1 , Células Eritroides/citología , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Células Nutrientes/citología , Células Nutrientes/efectos de los fármacos , Células Nutrientes/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genoma Humano/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/enzimología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/citología , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Ratones , Receptores de Hidrocarburo de Aril/agonistas
2.
Stem Cell Reports ; 8(4): 1076-1085, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28111279

RESUMEN

Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium, we generated a diverse, comprehensive, and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs) from patients of different ethnicities, ß-globin gene (HBB) haplotypes, and fetal hemoglobin (HbF) levels. iPSCs stand to revolutionize the way we study human development, model disease, and perhaps eventually, treat patients. Here, we describe this unique resource for the study of sickle cell disease, including novel haplotype-specific polymorphisms that affect disease severity, as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library, and as proof of principle for future cell- and gene-based therapies, we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS) mutation.


Asunto(s)
Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Sistemas CRISPR-Cas , Terapia Genética , Hemoglobina Falciforme/genética , Células Madre Pluripotentes Inducidas/metabolismo , Globinas beta/genética , Adolescente , Adulto , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/etnología , Secuencia de Bases , Línea Celular , Células Cultivadas , Niño , Preescolar , Células Eritroides/citología , Células Eritroides/metabolismo , Femenino , Hemoglobina Fetal/análisis , Terapia Genética/métodos , Haplotipos , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Persona de Mediana Edad , Mutación Puntual , Polimorfismo Genético , Transcriptoma , Adulto Joven
3.
J Vis Exp ; (68)2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23149977

RESUMEN

Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)(1-4). Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies(5). We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors(6). These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs(7-9). In one study, a Tet inducible version of the STEMCCA vector was employed(9), which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) using a single floxed-excisable lentiviral vector constitutively expressing the 4 factors. Freshly collected or thawed PBMCs are expanded for 9 days as described(10,11) in medium containing ascorbic acid, SCF, IGF-1, IL-3 and EPO before being transduced with the STEMCCA lentivirus. Cells are then plated onto MEFs and ESC-like colonies can be visualized two weeks after infection. Finally, selected clones are expanded and tested for the expression of the pluripotency markers SSEA-4, Tra-1-60 and Tra-1-81. This protocol is simple, robust and highly consistent, providing a reliable methodology for the generation of human iPSCs from readily accessible 4 ml of blood.


Asunto(s)
Lentivirus/genética , Leucocitos Mononucleares/fisiología , Células Madre Pluripotentes/fisiología , Antígenos de Superficie/biosíntesis , Vectores Genéticos/genética , Humanos , Factor 4 Similar a Kruppel , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteoglicanos/biosíntesis , Antígenos Embrionarios Específico de Estadio/biosíntesis , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA