Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Biol ; 22(5): e3002594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38754362

RESUMEN

The standard genetic code defines the rules of translation for nearly every life form on Earth. It also determines the amino acid changes accessible via single-nucleotide mutations, thus influencing protein evolvability-the ability of mutation to bring forth adaptive variation in protein function. One of the most striking features of the standard genetic code is its robustness to mutation, yet it remains an open question whether such robustness facilitates or frustrates protein evolvability. To answer this question, we use data from massively parallel sequence-to-function assays to construct and analyze 6 empirical adaptive landscapes under hundreds of thousands of rewired genetic codes, including those of codon compression schemes relevant to protein engineering and synthetic biology. We find that robust genetic codes tend to enhance protein evolvability by rendering smooth adaptive landscapes with few peaks, which are readily accessible from throughout sequence space. However, the standard genetic code is rarely exceptional in this regard, because many alternative codes render smoother landscapes than the standard code. By constructing low-dimensional visualizations of these landscapes, which each comprise more than 16 million mRNA sequences, we show that such alternative codes radically alter the topological features of the network of high-fitness genotypes. Whereas the genetic codes that optimize evolvability depend to some extent on the detailed relationship between amino acid sequence and protein function, we also uncover general design principles for engineering nonstandard genetic codes for enhanced and diminished evolvability, which may facilitate directed protein evolution experiments and the bio-containment of synthetic organisms, respectively.


Asunto(s)
Evolución Molecular , Código Genético , Proteínas , Proteínas/genética , Proteínas/metabolismo , Mutación/genética , Codón/genética , Modelos Genéticos , Biología Sintética/métodos , Biosíntesis de Proteínas , Ingeniería de Proteínas/métodos
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145034

RESUMEN

Evolutionary adaptation often occurs by the fixation of beneficial mutations. This mode of adaptation can be characterized quantitatively by a spectrum of adaptive substitutions, i.e., a distribution for types of changes fixed in adaptation. Recent work establishes that the changes involved in adaptation reflect common types of mutations, raising the question of how strongly the mutation spectrum shapes the spectrum of adaptive substitutions. We address this question with a codon-based model for the spectrum of adaptive amino acid substitutions, applied to three large datasets covering thousands of amino acid changes identified in natural and experimental adaptation in Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis Using species-specific mutation spectra based on prior knowledge, we find that the mutation spectrum has a proportional influence on the spectrum of adaptive substitutions in all three species. Indeed, we find that by inferring the mutation rates that best explain the spectrum of adaptive substitutions, we can accurately recover the species-specific mutation spectra. However, we also find that the predictive power of the model differs substantially between the three species. To better understand these differences, we use population simulations to explore the factors that influence how closely the spectrum of adaptive substitutions mirrors the mutation spectrum. The results show that the influence of the mutation spectrum decreases with increasing mutational supply ([Formula: see text]) and that predictive power is strongly affected by the number and diversity of beneficial mutations.


Asunto(s)
Adaptación Fisiológica , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Saccharomyces cerevisiae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Mutación , Mycobacterium tuberculosis/fisiología , Saccharomyces cerevisiae/fisiología , Especificidad de la Especie
3.
Bioinformatics ; 38(18): 4293-4300, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35900151

RESUMEN

MOTIVATION: Several recently developed single-cell DNA sequencing technologies enable whole-genome sequencing of thousands of cells. However, the ultra-low coverage of the sequenced data (<0.05× per cell) mostly limits their usage to the identification of copy number alterations in multi-megabase segments. Many tumors are not copy number-driven, and thus single-nucleotide variant (SNV)-based subclone detection may contribute to a more comprehensive view on intra-tumor heterogeneity. Due to the low coverage of the data, the identification of SNVs is only possible when superimposing the sequenced genomes of hundreds of genetically similar cells. Thus, we have developed a new approach to efficiently cluster tumor cells based on a Bayesian filtering approach of relevant loci and exploiting read overlap and phasing. RESULTS: We developed Single Cell Data Tumor Clusterer (SECEDO, lat. 'to separate'), a new method to cluster tumor cells based solely on SNVs, inferred on ultra-low coverage single-cell DNA sequencing data. We applied SECEDO to a synthetic dataset simulating 7250 cells and eight tumor subclones from a single patient and were able to accurately reconstruct the clonal composition, detecting 92.11% of the somatic SNVs, with the smallest clusters representing only 6.9% of the total population. When applied to five real single-cell sequencing datasets from a breast cancer patient, each consisting of ≈2000 cells, SECEDO was able to recover the major clonal composition in each dataset at the original coverage of 0.03×, achieving an Adjusted Rand Index (ARI) score of ≈0.6. The current state-of-the-art SNV-based clustering method achieved an ARI score of ≈0, even after merging cells to create higher coverage data (factor 10 increase), and was only able to match SECEDOs performance when pooling data from all five datasets, in addition to artificially increasing the sequencing coverage by a factor of 7. Variant calling on the resulting clusters recovered more than twice as many SNVs as would have been detected if calling on all cells together. Further, the allelic ratio of the called SNVs on each subcluster was more than double relative to the allelic ratio of the SNVs called without clustering, thus demonstrating that calling variants on subclones, in addition to both increasing sensitivity of SNV detection and attaching SNVs to subclones, significantly increases the confidence of the called variants. AVAILABILITY AND IMPLEMENTATION: SECEDO is implemented in C++ and is publicly available at https://github.com/ratschlab/secedo. Instructions to download the data and the evaluation code to reproduce the findings in this paper are available at: https://github.com/ratschlab/secedo-evaluation. The code and data of the submitted version are archived at: https://doi.org/10.5281/zenodo.6516955. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Teorema de Bayes , Análisis de Secuencia de ADN , Genoma , Secuencia de Bases , Neoplasias/genética , Polimorfismo de Nucleótido Simple
4.
Mol Biol Evol ; 38(11): 5127-5133, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34373928

RESUMEN

Selection for resource conservation can shape the coding sequences of organisms living in nutrient-limited environments. Recently, it was proposed that selection for resource conservation, specifically for nitrogen and carbon content, has also shaped the structure of the standard genetic code, such that the missense mutations the code allows tend to cause small increases in the number of nitrogen and carbon atoms in amino acids. Moreover, it was proposed that this optimization is not confounded by known optimizations of the standard genetic code, such as for polar requirement or hydropathy. We challenge these claims. We show the proposed optimization for nitrogen conservation is highly sensitive to choice of null model and the proposed optimization for carbon conservation is confounded by the known conservative nature of the standard genetic code with respect to the molecular volume of amino acids. There is therefore little evidence the standard genetic code is optimized for resource conservation. We discuss our findings in the context of null models of the standard genetic code.


Asunto(s)
Evolución Molecular , Código Genético , Aminoácidos/genética , Modelos Genéticos , Mutación Missense , Nitrógeno
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1877): 20220055, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37004719

RESUMEN

Predicting evolutionary outcomes is an important research goal in a diversity of contexts. The focus of evolutionary forecasting is usually on adaptive processes, and efforts to improve prediction typically focus on selection. However, adaptive processes often rely on new mutations, which can be strongly influenced by predictable biases in mutation. Here, we provide an overview of existing theory and evidence for such mutation-biased adaptation and consider the implications of these results for the problem of prediction, in regard to topics such as the evolution of infectious diseases, resistance to biochemical agents, as well as cancer and other kinds of somatic evolution. We argue that empirical knowledge of mutational biases is likely to improve in the near future, and that this knowledge is readily applicable to the challenges of short-term prediction. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Mutación , Adaptación Fisiológica/genética , Aclimatación , Sesgo , Evolución Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA