Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Neurobiol Learn Mem ; 149: 135-143, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29458098

RESUMEN

Lipopolysaccharide (LPS) has been long known to promote neuroinflammation and learning and memory deficits. Since spermine, one of the main natural polyamines in the central nervous system, protects from LPS-induced memory deficit by a mechanism that comprises GluN2B receptors, the aim of the present study was to determine whether brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) receptor and cAMP response element binding (CREB) are involved in this protective effect of spermine. Adult male Swiss albino mice received, immediately after training in the novel object recognition task, saline or LPS (250 µg/kg, i.p.); 5 min later they received saline or spermine (0.3 mg/kg, i.p.) and, when specified, 5 min thereafter saline or the TrkB receptor antagonist ANA-12 (0.5 mg/kg, i.p.) in different flanks. Animals were tested 24 h after training. Spermine protected from LPS-induced memory deficit and this protective effect was reversed by ANA-12. In a subset of animals BDNF, CREB and phospho-CREB immunoreactivity was determined in the hippocampi and cerebral cortex 4 h after spermine injection. Spermine reversed the decrease of mature BDNF levels induced by LPS in both hippocampus and cerebral cortex. Spermine increased phospho-CREB content and phospho-CREB/total CREB ratio in the cerebral cortex of LPS-treated mice. The results support that the protective effect of spermine on LPS-induced memory deficits depends on TrkB receptor activation and is accompanied by restoration of mature BDNF levels in hippocampus and cerebral cortex, as well as increased CREB phosphorylation in the cerebral cortex.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Trastornos de la Memoria/metabolismo , Fármacos Neuroprotectores/farmacología , Proteínas Tirosina Quinasas/metabolismo , Espermina/farmacología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/metabolismo , Lipopolisacáridos , Masculino , Trastornos de la Memoria/inducido químicamente , Ratones , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
Neurobiol Learn Mem ; 140: 82-91, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28254465

RESUMEN

Putrescine, spermidine and spermine are organic cations implicated in learning, memory consolidation, reconsolidation and neurogenesis. These physiological processes are closely related, and convincing evidence indicates that neurogenesis is implicated both, in the establishment and maintenance of remote contextual fear memory. Although brain-derived neurotrophic factor (BDNF) is a key mediator involved in both neurogenesis and memory consolidation, effects of spermidine on persistence of memory after reactivation (reconsolidation) and possible involvement of BDNF have not been investigated. Here, we investigated whether the intrahippocampal infusion of spermidine improves the persistence of reconsolidated contextual fear conditioning memory in rats and whether these possible changes depend on BDNF/TrkB signaling in the hippocampus. The infusion of spermidine immediately and 12h post-reactivation improved fear memory of the animals tested seven but not two days after reactivation. The facilitatory effect of spermidine on the persistence of reconsolidated memory was blocked by the TrkB inhibitor ANA-12 (73.6pmol/site) and accompanied by mature BDNF level increase in the hippocampus, indicating that it depends on the BDNF/TrkB pathway. We also investigated whether spermidine alters BDNF levels and neural progenitor cell differentiation in vitro. Spermidine increased BDNF levels in vitro, facilitating neuritogenesis and neural migration. Spermidine-induced neuritogenesis in vitro was also blocked by ANA-12 (10µM). Since spermidine increases BDNF levels and facilitates neural differentiation in vitro, similar mechanisms may be involved in spermidine-induced facilitation of the persistence of reconsolidated memory.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Miedo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Espermidina/farmacología , Animales , Azepinas/farmacología , Benzamidas/farmacología , Movimiento Celular/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar , Receptor trkB/antagonistas & inhibidores
3.
Environ Toxicol ; 32(1): 70-83, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26592365

RESUMEN

This study investigated the protective effect of curcumin on memory loss and on the alteration of acetylcholinesterase and ectonucleotidases activities in rats exposed chronically to cadmium (Cd). Rats received Cd (1 mg/kg) and curcumin (30, 60, or 90 mg/kg) by oral gavage 5 days a week for 3 months. The animals were divided into eight groups: vehicle (saline/oil), saline/curcumin 30 mg/kg, saline/curcumin 60 mg/kg, saline/curcumin 90 mg/kg, Cd/oil, Cd/curcumin 30 mg/kg, Cd/curcumin 60 mg/kg, and Cd/curcumin 90 mg/kg. Curcumin prevented the decrease in the step-down latency induced by Cd. In cerebral cortex synaptosomes, Cd-exposed rats showed an increase in acetylcholinesterase and NTPDase (ATP and ADP as substrates) activities and a decrease in the 5'-nucleotidase activity. Curcumin was not able to prevent the effect of Cd on acetylcholinesterase activity, but it prevented the effects caused by Cd on NTPDase (ATP and ADP as substrate) and 5'-nucleotidase activities. Increased acetylcholinesterase activity was observed in different brain structures, whole blood and lymphocytes of the Cd-treated group. In addition, Cd increased lipid peroxidation in different brain structures. Higher doses of curcumin were more effective in preventing these effects. These findings show that curcumin prevented the Cd-mediated memory impairment, demonstrating that this compound has a neuroprotective role and is capable of modulating acetylcholinesterase, NTPDase, and 5'-nucleotidase activities. Finally, it highlights the possibility of using curcumin as an adjuvant against toxicological conditions involving Cd exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 70-83, 2017.


Asunto(s)
Intoxicación por Cadmio/fisiopatología , Curcumina/uso terapéutico , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Sistema Nervioso Parasimpático/efectos de los fármacos , Receptores Purinérgicos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Intoxicación por Cadmio/enzimología , Curcumina/administración & dosificación , Relación Dosis-Respuesta a Droga , Electrochoque , Peroxidación de Lípido/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Ratas , Ratas Wistar , Sinaptosomas/efectos de los fármacos , Sinaptosomas/enzimología
4.
Learn Mem ; 23(1): 21-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26670183

RESUMEN

In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus. Twenty-four hours after training, animals were re-exposed to the apparatus in the absence of shock (reactivation session). Immediately after the reactivation session, spermidine (2-200 pmol/site), the PKC inhibitor 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl) maleimide hydrochloride (GF 109203X, 0.3-30 pg/site), the antagonist of the polyamine-binding site at the NMDA receptor, arcaine (0.2-200 pmol/site), or the PKC activator phorbol 12-myristate 13-acetate (PMA, 0.02-2 nmol/site) was injected. While the post-reactivation administration of spermidine (20 and 200 pmol/site) and PMA (2 nmol/site) improved memory reconsolidation, GF 109203X (1, 10, and 30 pg/site) and arcaine (200 pmol/site) impaired it. GF 109203X (0.3 pg/site) impaired memory reconsolidation in the presence of spermidine (200 pmol/site). PMA (0.2 nmol/site) prevented the arcaine (200 pmol/site)-induced impairment of memory reconsolidation. Anisomycin (2 µg/site) also impaired memory reconsolidation in the presence of spermidine (200 pmol/site). Drugs had no effect when they were administered in the absence of reactivation. These results suggest that the spermidine-induced enhancement of memory reconsolidation involves PKC activation.


Asunto(s)
Memoria/efectos de los fármacos , Proteínas Quinasas/metabolismo , Espermidina/farmacología , Análisis de Varianza , Animales , Anisomicina/farmacología , Biguanidas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Miedo/efectos de los fármacos , Miedo/fisiología , Hipocampo/efectos de los fármacos , Indoles/farmacología , Masculino , Maleimidas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Wistar
5.
Neurobiol Learn Mem ; 131: 18-25, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26968655

RESUMEN

Spermidine (SPD) is an endogenous aliphatic amine that modulates GluN2B-containing NMDA receptors and improves memory. Recent evidence suggests that systemic SPD improves the persistence of the long term memory of fear. However, the role of hippocampal polyamines and its binding sites in the persistence of fear memory is to be determined, as well as its putative underlying mechanisms. This study investigated whether the intrahippocampal (i.h.) infusion of spermidine or arcaine, modulators of polyamine binding site at GluN2B-containing NMDA receptors, alters the persistence of the memory of contextual fear conditioning task in rats. We also investigated whether protein synthesis and cAMP dependent protein kinase (PKA) play a role in SPD-induced improvement of the fear memory persistence. While 12h post-training infusion of spermidine facilitated, arcaine and the inhibitor of protein synthesis (anisomycin) impaired the memory of fear assessed 7days after training. The infusion of arcaine, anisomycin or a selective PKA inhibitor (H-89), at doses that have no effect on memory per se, prevented the SPD-induced improvement of memory persistence. H-89 prevented the stimulatory effect of SPD on phospho-PKA/total-PKA ratio. These results suggests that the improvement of fear memory persistence induced by spermidine involves GluN2B-containing NMDA receptors, PKA pathway and protein synthesis in rats.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miedo/fisiología , Hipocampo/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Nootrópicos/farmacología , Poliaminas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Espermidina/farmacología , Animales , Anisomicina/administración & dosificación , Anisomicina/farmacología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Biguanidas/administración & dosificación , Biguanidas/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Isoquinolinas/administración & dosificación , Isoquinolinas/farmacología , Masculino , Nootrópicos/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Ratas , Ratas Wistar , Espermidina/administración & dosificación , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacología
6.
Pharmacol Res ; 112: 99-118, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27015893

RESUMEN

Spermine and spermidine are natural polyamines that are produced mainly via decarboxylation of l-ornithine and the sequential transfer of aminopropyl groups from S-adenosylmethionine to putrescine by spermidine synthase and spermine synthase. Spermine and spermidine interact with intracellular and extracellular acidic residues of different nature, including nucleic acids, phospholipids, acidic proteins, carboxyl- and sulfate-containing polysaccharides. Therefore, multiple actions have been suggested for these polycations, including modulation of the activity of ionic channels, protein synthesis, protein kinases, and cell proliferation/death, within others. In this review we summarize these neurochemical/neurophysiological/morphological findings, particularly those that have been implicated in the improving and deleterious effects of spermine and spermidine on learning and memory of naïve animals in shock-motivated and nonshock-motivated tasks, from a historical perspective. The interaction with the opioid system, the facilitation and disruption of morphine-induced reward and the effect of polyamines and putative polyamine antagonists on animal models of cognitive diseases, such as Alzheimer's, Huntington, acute neuroinflammation and brain trauma are also reviewed and discussed. The increased production of polyamines in Alzheimer's disease and the biphasic nature of the effects of polyamines on memory and on the NMDA receptor are also considered. In light of the current literature on polyamines, which include the description of an inborn error of the metabolism characterized by mild-to moderate mental retardation and polyamine metabolism alterations in suicide completers, we can anticipate that polyamine targets may be important for the development of novel strategies and approaches for understanding the etiopathogenesis of important central disorders and their pharmacological treatment.


Asunto(s)
Aprendizaje , Memoria , Espermidina/química , Espermina/química , Animales , Sitios de Unión , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/fisiopatología , Humanos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Putrescina/química , Putrescina/metabolismo , Ratas , Espermidina/metabolismo , Espermina/metabolismo
7.
Exp Parasitol ; 169: 51-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27472985

RESUMEN

The aim of this study was to evaluate the effect of subcutaneous administration of diphenyl diselenide (PhSe)2 on animal behavior and activities of acetylcholinesterase (AChE), adenylate kinase (AK), and creatine kinase (CK) in the brain of mice infected by Toxoplasma gondii. In addition, thiobarbituric acid reactive species (TBARS) levels and glutathione (GR, GPx and GST) activity were also evaluated. For the study, 40 female mice were divided into four groups of 10 animals each: group A (uninfected and untreated), group B (uninfected and treated with (PhSe)2), group C (infected and untreated) and group D (infected and treated with (PhSe)2). The mice were inoculated with 50 cysts of the ME49 strain of T. gondii. After infection the animals of the groups B and D were treated on days 1 and 20 post-infection (PI) with 5.0 µmol/kg of (PhSe)2 subcutaneously. Behavioral tests were conducted on days 29 PI to assess memory loss (object recognition), anxiety (elevated plus maze), locomotor and exploratory activity (Open Field) and it was found out that infected and untreated animals (group C) had developed anxiety and memory impairment, and the (PhSe)2 treatment did not reverse these behavioral changes on infected animals treated with (PhSe)2 (group D). The results showed an increase on AChE activity (P < 0.01) in the brain of infected and untreated animals (group C) compared to the uninfected and untreated animals (group A). The AK and CK activities decreased in infected and untreated animals (group C) compared to the uninfected and untreated animals (group A) (P < 0.01), however the (PhSe)2 treatment did not reverse these alterations. Infected and untreated animals (group C) showed increased TBARS levels and GR activity, and decreased GPx and GST activities when compared to uninfected and untreated animals (group A). Infected animals treated with (PhSe)2 (group D) decreased TBARS levels and GR activity, while increased GST activity when compared to infected and untreated animals (group C). It was concluded that (PhSe)2 showed antioxidant activity, but the dose used had no anti-inflammatory effect and failed to reverse the behavioral changes caused by the parasite.


Asunto(s)
Conducta Animal/efectos de los fármacos , Derivados del Benceno/uso terapéutico , Encéfalo/efectos de los fármacos , Compuestos de Organoselenio/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Toxoplasmosis Animal/tratamiento farmacológico , Acetilcolinesterasa/metabolismo , Adenilato Quinasa/metabolismo , Animales , Derivados del Benceno/administración & dosificación , Derivados del Benceno/farmacología , Encéfalo/enzimología , Encéfalo/patología , Creatina Quinasa/metabolismo , Femenino , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Inyecciones Subcutáneas , Ratones , Compuestos de Organoselenio/administración & dosificación , Compuestos de Organoselenio/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Toxoplasmosis Animal/fisiopatología
8.
J Neuroinflammation ; 12: 3, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25573647

RESUMEN

BACKGROUND: Lipopolysaccharide (LPS) induces neuroinflammation and memory deficit. Since polyamines improve memory in various cognitive tasks, we hypothesized that spermine administration reverses LPS-induced memory deficits in an object recognition task in mice. The involvement of the polyamine binding site at the N-methyl-D-aspartate (NMDA) receptor and cytokine production in the promnesic effect of spermine were investigated. METHODS: Adult male mice were injected with LPS (250 µg/kg, intraperitoneally) and spermine (0.3 to 1 mg/kg, intraperitoneally) or ifenprodil (0.3 to 10 mg/kg, intraperitoneally), or both, and their memory function was evaluated using a novel object recognition task. In addition, cortical and hippocampal cytokines levels were measured by ELISA four hours after LPS injection. RESULTS: Spermine increased but ifenprodil decreased the recognition index in the novel object recognition task. Spermine, at doses that did not alter memory (0.3 mg/kg, intraperitoneally), reversed the cognitive impairment induced by LPS. Ifenprodil (0.3 mg/kg, intraperitoneally) reversed the protective effect of spermine against LPS-induced memory deficits. However, spermine failed to reverse the LPS-induced increase of cortical and hippocampal cytokine levels. CONCLUSIONS: Spermine protects against LPS-induced memory deficits in mice by a mechanism that involves GluN2B receptors.


Asunto(s)
Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Espermina/uso terapéutico , Análisis de Varianza , Animales , Citocinas/metabolismo , Discriminación en Psicología/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Antagonistas de Aminoácidos Excitadores/farmacología , Conducta Exploratoria/efectos de los fármacos , Lipopolisacáridos/toxicidad , Masculino , Ratones , Piperidinas/farmacología , Reconocimiento en Psicología/efectos de los fármacos
9.
Mol Cell Biochem ; 388(1-2): 277-86, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24370728

RESUMEN

Diabetes mellitus (DM) is associated with brain alterations that may contribute to cognitive dysfunctions. Chlorogenic acid (CGA) and caffeine (CA), abundant in coffee (CF), are natural compounds that have showed important actions in the brain. The present study aimed to evaluate the effect of CGA, CA, and CF on acetylcholinesterase (AChE), Na(+), K(+)-ATPase, aminolevulinate dehydratase (δ-ALA-D) activities and TBARS levels from cerebral cortex, as well as memory and anxiety in streptozotocin-induced diabetic rats. Animals were divided into eight groups (n = 5-10): control; control/CGA 5 mg/kg; control/CA 15 mg/kg; control/CF 0.5 g/kg; diabetic; diabetic/CGA 5 mg/kg; diabetic/CA 15 mg/kg; and diabetic/CF 0.5 g/kg. Our results demonstrated an increase in AChE activity and TBARS levels in cerebral cortex, while δ-ALA-D and Na(+), K(+)-ATPase activities were decreased in the diabetic rats when compared to control water group. Furthermore, a memory deficit and an increase in anxiety in diabetic rats were observed. The treatment with CGA and CA prevented the increase in AChE activity in diabetic rats when compared to the diabetic water group. CGA, CA, and CF intake partially prevented cerebral δ-ALA-D and Na(+), K(+)-ATPase activity decrease due to diabetes. Moreover, CGA prevented diabetes-induced TBARS production, improved memory, and decreased anxiety. In conclusion, among the compounds studied CGA proved to be a compound which acts better in the prevention of brain disorders promoted by DM.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cafeína/farmacología , Ácido Clorogénico/farmacología , Café , Diabetes Mellitus Experimental/tratamiento farmacológico , Acetilcolinesterasa/biosíntesis , Animales , Ansiedad/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Corteza Cerebral/metabolismo , Masculino , Memoria/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Porfobilinógeno Sintasa/biosíntesis , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Estreptozocina , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
10.
Cell Biochem Funct ; 32(6): 502-10, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24947461

RESUMEN

Diabetes is associated with long-term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3 ) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)-induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na(+) K(+) -adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ-ALA-D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ-induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3 , control/Metf + VD3 , diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3 . Thirty days after treatment, animals were submitted to contextual fear-conditioning and open-field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ-ALA-D and Na(+) K(+) -ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na(+) K(+) -ATPase was reverted when compared with non-treated rats, but the increase in δ-ALA-D activity was not. VD3 prevented diabetes-induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na(+) K(+) -ATPase and AChE in cerebral cortex in type 1 diabetic rats.


Asunto(s)
Colecalciferol/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Vitaminas/farmacología , Acetilcolinesterasa/metabolismo , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Colecalciferol/uso terapéutico , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/psicología , Ingestión de Alimentos/efectos de los fármacos , Miedo/efectos de los fármacos , Hipoglucemiantes/farmacología , Masculino , Memoria/efectos de los fármacos , Metformina/farmacología , Porfobilinógeno Sintasa/metabolismo , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estreptozocina , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Vitaminas/uso terapéutico
11.
Pharmacol Biochem Behav ; 240: 173774, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38648866

RESUMEN

Memory consolidation is associated with the regulation of protein kinases, which impact synaptic functions and promote synaptogenesis. The administration of spermidine (SPD) has been shown to modulate major protein kinases associated with memory improvement, including the Ca2+-dependent protein kinase (PKC) and cAMP-dependent protein kinase (PKA), key players in the cAMP response element-binding protein (CREB) activation. Nevertheless, the initial mechanism underlying SPD-mediated memory consolidation remains unknown, as we hypothesize a potential involvement of the memory consolidation precursor, Ca2+/calmodulin-dependent protein kinase II-α (CaMKIIα), in this process. Based on this, our study aimed to investigate potential interactions among PKC, PKA, and CREB activation, mediated by CaMKIIα activation, in order to elucidate the SPD memory consolidation pathway. Our findings suggest that the post-training administration of the CaMKII inhibitor, KN-62 (0.25 nmol, intrahippocampal), prevented the memory enhancement induced by SPD (0.2 nmol, intrahippocampal) in the inhibitory avoidance task. Through western immunoblotting, we observed that phosphorylation of CaMKIIα in the hippocampus was facilitated 15 min after intrahippocampal SPD administration, resulting in the activation of PKA and CREB, 180 min after infusion, suggesting a possible sequential mechanism, since SPD with KN-62 infusion leads to a downregulation in CaMKIIα/PKA/CREB pathway. However, KN-62 does not alter the memory-facilitating effect of SPD on PKC, possibly demonstrating a parallel cascade in memory acquisition via PKA, without modulating CAMKIIα. These results suggest that memory enhancement induced by SPD administration involves crosstalk between CaMKIIα and PKA/CREB, with no PKC interaction.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Memoria , Ratas Wistar , Transducción de Señal , Espermidina , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratas , Espermidina/farmacología , Masculino , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Memoria/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Fosforilación/efectos de los fármacos , Sulfonamidas/farmacología , Bencilaminas/farmacología , Bencilaminas/administración & dosificación , Reacción de Prevención/efectos de los fármacos , Proteína Quinasa C/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados
12.
Neurobiol Learn Mem ; 104: 9-15, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23632063

RESUMEN

When consolidated memories are reactivated, they become labile and, to persist, must undergo a new stabilization process called reconsolidation. During reactivation, memory is susceptible to pharmacological interventions that may improve or impair it. Spermidine (SPD) is an endogenous polyamine that physiologically modulates the N-methyl-d-aspartate (NMDA) receptor in mammals by binding on the polyamine-binding site at the NMDA receptor. While polyamine agonists and antagonists of the polyamine binding site on the NMDA receptor respectively improve and impair early consolidation, it has not been defined whether these agents alter memory reconsolidation. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4 mA footshock as unconditioned stimulus. Twenty four hours after training, animals were re-exposed to the apparatus in the absence of shock (reactivation session). Immediately after the reactivation session, SPD (1-30 mg/kg, i.p.) or the antagonist of the polyamine-binding site at the NMDA receptor, arcaine (0.1-10 mg/kg, i.p.), were injected, and the animals were tested in the same apparatus 24 h later. Freezing scores at testing were considered a measure of memory. While SPD (3 and 10mg/kg) improved, arcaine (1 and 10 mg/kg) impaired memory reconsolidation. These drugs had no effect on memory if they were administered in the absence of reactivation, or 6h after reactivation session. Arcaine (0.1 mg/kg, i.p.) prevented SPD (3 mg/kg)-induced improvement of memory reconsolidation. Accordingly, SPD (1 mg/kg) prevented arcaine (10 mg/kg)-induced impairment of memory reconsolidation. The amnesic effect of arcaine was not reversed by arcaine administration prior to test, ruling out state dependence in this effect. These results suggest that systemic administration of polyamine binding site ligands modulate memory reconsolidation.


Asunto(s)
Biguanidas/farmacología , Miedo , Memoria/efectos de los fármacos , Memoria/fisiología , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Espermidina/farmacología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Miedo/efectos de los fármacos , Masculino , Ratas , Ratas Wistar
13.
Neurobiol Learn Mem ; 100: 98-107, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23261855

RESUMEN

Cigarette smoke-exposure promotes neurobiological changes associated with neurocognitive abnormalities. Curcumin, a natural polyphenol, have shown to be able to prevent cigarette smoke-induced cognitive impairment. Here, we investigated possible mechanisms involved in curcumin protection against cigarette smoke-induced cognitive impairment and, due to its poor bioavailability, we investigated the potential of using curcumin-loaded lipid-core nanocapsules (C-LNC) suspension. Rats were treated with curcumin and cigarette smoke, once a day, 5 days each week, for 30 days. Animals were divided into ten groups: I, control (vehicle/corn oil); II, curcumin 12.5mg/kg; III, curcumin 25mg/kg; IV, curcumin 50mg/kg; V, C-LNC 4 mg/kg; VI, tobacco exposed; VII, curcumin 12.5mg/kg along with tobacco exposure; VIII, curcumin 25mg/kg along with tobacco exposure; IX, curcumin 50mg/kg along with tobacco exposure; X, C-LNC 4 mg/kg along with tobacco exposure. Cigarette smoke-exposure impaired object recognition memory (P<0.001), indicated by the low recognition index, increased biomarkers of oxidative/nitrosative stress such as TBARS (P<0.05) and NOx (P<0.01), decreased antioxidant defenses such as NPSH content (P<0.01) and SOD activity (P<0.01) and inhibited the activities of enzymes involved in ion homeostasis such as Na(+),K(+)-ATPase and Ca(2+)-ATPase. Both curcumin formulations (free and nanoencapsulated) prevented the memory impairment, the redox imbalance and the alterations observed in the ATPases activities. Maintenance of ion homeostasis and redox balance is involved in the protective mechanism of curcumin against tobacco-induced cognitive impairment. Our results suggest that curcumin is a potential therapeutic agent for neurocognition and that C-LNC may be an alternative to its poor bioavailability.


Asunto(s)
Trastornos del Conocimiento/prevención & control , Curcumina/farmacología , Memoria/efectos de los fármacos , Nicotiana/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Humo/efectos adversos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Memoria/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Oxidación-Reducción , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
14.
Neurochem Res ; 38(11): 2287-94, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24005822

RESUMEN

Alzheimer's disease (AD) is biochemically characterized by the occurrence of extracellular deposits of amyloid beta peptide (Aß) and intracellular deposits of the hyperphosphorylated tau protein, which are causally related to the pathological hallmarks senile plaques and neurofibrillary tangles. Monoamine oxidase B (MAO-B) activity, involved in the oxidation of biogenic monoamines, is particularly high around the senile plaques and increased in AD patients in middle to late clinical stages of the disease. Selegiline is a selective and irreversible MAO-B inhibitor and, although clinical trials already shown the beneficial effect of selegiline on cognition of AD patients, its mechanism of action remains to be elucidated. Therefore, we first investigated whether selegiline reverses the impairment of object recognition memory induced by Aß25-35 in mice, an established model of AD. In addition, we investigated whether selegiline alters MAO-B and MAO-A activities in the hippocampus, perirhinal and remaining cerebral cortices of Aß25-35-injected male mice. Acute (1 and 10 mg/kg, p.o., immediately post-training) and subchronic (10 mg/kg, p.o., seven days after Aß25-35 injection and immediately post-training) administration of selegiline reversed the cognitive impairment induced by Aß25-35 (3 nmol, i.c.v.). Acute administration of selegiline (1 mg/kg, p.o.) in combination with Aß25-35 (3 nmol) decreased MAO-B activity in the perirhinal and remaining cerebral cortices. Acute administration of selegiline (10 mg/kg, p.o.) decreased MAO-B activity in hippocampus, perirhinal and remaining cerebral cortices, regardless of Aß25-35 or Aß35-25 treatment. MAO-A activity was not altered by selegiline or Aß25-35. In summary, the current findings further support a role for cortical monoaminergic transmission in the cognitive deficits observed in AD.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Selegilina/uso terapéutico , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Animales , Corteza Cerebral/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Ratones , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/uso terapéutico , Fragmentos de Péptidos
15.
Neurochem Res ; 38(4): 886-94, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23397287

RESUMEN

It is well known that the levels of adenosine in the brain increase dramatically during cerebral hypoxic-ischemic (HI) insults. Its levels are tightly regulated by physiological and pathophysiological changes that occur during the injury acute phase. The aim of the present study was to examine the effects of the neonatal HI event on cytosolic and ecto-enzymes of purinergic system--NTPDase, 5'-nucleotidase (5'-NT) and adenosine deaminase (ADA)--in cerebral cortex of rats immediately post insult. Furthermore, the Na(+)/K(+)-ATPase activity, adenosine kinase (ADK) expression and thiobarbituric acid reactive species (TBARS) levels were assessed. Immediately after the HI event the cytosolic NTPDase and 5'-NT activities were increased in the cerebral cortex. In synaptosomes there was an increase in the ecto-ADA activity while the Na(+)/K(+) ATPase activity presented a decrease. The difference between ATP, ADP, AMP and adenosine degradation in synaptosomal and cytosolic fractions could indicate that NTPDase, 5'-NT and ADA were differently affected after insult. Interestingly, no alterations in the ADK expression were observed. Furthermore, the Na(+)/K(+)-ATPase activity was correlated negatively with the cytosolic NTPDase activity and TBARS content. The increased hydrolysis of nucleotides ATP, ADP and AMP in the cytosol could contribute to increased adenosine levels, which could be related to a possible innate neuroprotective mechanism aiming at potentiating the ambient levels of adenosine. Together, these results may help the understanding of the mechanism by which adenosine is produced following neonatal HI injury, therefore highlighting putative therapeutical targets to minimize ischemic injury and enhance recovery.


Asunto(s)
Adenosina Quinasa/metabolismo , Adenosina/metabolismo , Corteza Cerebral/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , 5'-Nucleotidasa/metabolismo , Adenosina Desaminasa/metabolismo , Animales , Animales Recién Nacidos , Masculino , Nucleósido-Trifosfatasa/metabolismo , Pirofosfatasas/metabolismo , Ratas , Ratas Wistar
16.
Neurochem Res ; 38(8): 1704-14, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23677777

RESUMEN

Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 µmol/5 µL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina Desaminasa/metabolismo , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores/farmacología , Piracetam/farmacología , Pirofosfatasas/metabolismo , Escopolamina/farmacología , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Masculino , Trastornos de la Memoria/inducido químicamente , Ratas , Ratas Wistar , Sinaptosomas/enzimología , Sinaptosomas/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
17.
Parasitology ; 140(11): 1432-41, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23965823

RESUMEN

The aim of this study was to investigate neurochemical and enzymatic changes in rats infected with Trypanosoma evansi, and their interference in the cognitive parameters. Behavioural assessment (assessment of cognitive performance), evaluation of cerebral L-[3H]glutamate uptake, acetylcholinesterase (AChE) activity and Ca+2 and Na+, K+-ATPase activity were evaluated at 5 and 30 days post infection (dpi). This study demonstrates a cognitive impairment in rats infected with T. evansi. At 5 dpi memory deficit was demonstrated by an inhibitory avoidance test. With the chronicity of the disease (30 dpi) animals showed anxiety symptoms. It is possible the inhibition of cerebral Na+, K+-ATPase activity, AChE and synaptosomal glutamate uptake are involved in cognitive impairment in infected rats by T. evansi. The understanding of cerebral host­parasite relationship may shed some light on the cryptic symptoms of animals and possibly human infection where patients often present with other central nervous system (CNS) disorders.


Asunto(s)
Ansiedad/parasitología , Interacciones Huésped-Parásitos , Trypanosoma/fisiología , Tripanosomiasis/fisiopatología , Acetilcolinesterasa/metabolismo , Animales , Ataxia , Conducta Animal , ATPasas Transportadoras de Calcio/metabolismo , Trastornos del Conocimiento , Perros , Ácido Glutámico/análisis , Humanos , Masculino , Aprendizaje por Laberinto , Sistema Nervioso/química , Parasitemia , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tritio/análisis , Tripanosomiasis/parasitología
18.
Behav Processes ; 210: 104912, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37406867

RESUMEN

Anxiety is a protective behavior when animals face aversive conditions. The open field test (OFT) is used to assess the spatio-temporal dynamics of exploration, in which both homebase formation and recognition of environmental cues may reflect habituation to unfamiliar conditions. Because emotional- and affective-like states influence exploration patterns and mnemonic aspects, we aimed to verify whether the exploratory behaviors of two zebrafish populations showing distinct baselines of anxiety differ in two OFT sessions. Firstly, we assessed the baseline anxiety-like responses of short fin (SF) and leopard (LEO) populations using the novel tank test (NTT) and light-dark test (LDT) in 6-min trials. Fish were later tested in two consecutive days in the OFT, where the spatial occupancy and exploratory profile were analyzed for 30 min. In general, LEO showed pronounced diving behavior and scototaxis in the NTT and LDT, respectively, in which an "anxiety index" corroborated their exacerbated anxiety-like behavior. In the OFT, the SF population spent less time to establish the homebase in the 1st trial, while only LEO showed a markedly reduction in the latency to homebase formation in the 2nd trial. Both locomotion and homebase-related activities were decreased in the 2nd trial, in which animals also revealed increased occupancy in the center area of the apparatus. Moreover, we verified a significant percentage of homebase conservation for both populations, while only SF showed reduced the number of trips and increased the average length of trips. Principal component analyses revealed that distinct factors accounted for total variances between trials for each population tested. While homebase exploration was reduced in the 2nd trial for SF, an increased occupancy in the center area and hypolocomotion were the main factors that contribute to the effects observed in LEO during re-exposure to the OFT. In conclusion, our novel data support the homebase conservation in zebrafish subjected to independent OFT sessions, as well as corroborate a population-dependent effect on specific behavioral parameters related to exploration.


Asunto(s)
Conducta Animal , Pez Cebra , Animales , Pez Cebra/fisiología , Conducta Animal/fisiología , Ansiedad , Locomoción , Conducta Exploratoria/fisiología , Fenotipo
19.
J Neurochem ; 122(2): 363-73, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22564082

RESUMEN

Spermidine (SPD) is an endogenous aliphatic amine with polycationic structure that modulates NMDA receptor activity and improves memory. Recent evidence suggests that cAMP-dependent protein kinase (PKA) and cAMP response element-binding protein (CREB) play a role in SPD-induced improvement of memory. In the current study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in SPD-induced facilitation of memory of inhibitory avoidance task in adult rats. The post-training administration of the PKC inhibitor, 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl)maleimide hydrochloride [GF 109203X, 2.5 ρmol, intrahippocampal (ih)] with SPD (0.2 nmol, ih) prevented memory improvement induced by SPD. Intrahippocampal administration of SPD (0.2 nmol) facilitated PKC phosphorylation in the hippocampus, 30 min after administration. GF 109203X prevented not only the stimulatory effect of SPD on PKC but also PKA and CREB phosphorylation. These results suggest that memory enhancement induced by the ih administration of SPD involves the cross-talk between PKC and PKA/CREB, with sequential activation of PKC and PKA/CREB pathways, in rats.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Memoria/efectos de los fármacos , Nootrópicos/uso terapéutico , Proteína Quinasa C/fisiología , Receptor Cross-Talk/efectos de los fármacos , Espermidina/uso terapéutico , Animales , Reacción de Prevención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Western Blotting , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Densitometría , Hipocampo , Indoles/farmacología , Inyecciones , Masculino , Maleimidas/farmacología , Actividad Motora/efectos de los fármacos , Nootrópicos/administración & dosificación , Nootrópicos/farmacología , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Espermidina/administración & dosificación , Espermidina/farmacología
20.
Neurobiol Learn Mem ; 97(3): 294-300, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22390858

RESUMEN

Previous exposure to the training context disrupts glutamatergic N-methyl-d-aspartate receptor (NMDAr) antagonist-induced amnesia, indicating that novelty is necessary for such an amnestic effect. While there are reports that novelty-related release of opioids cause amnesia, no study has addressed whether the amnestic effect of NMDAr antagonists involve opioid mechanisms. In this study we investigated whether pharmacological manipulation of the opioid system immediately after context pre-exposure alters the amnestic effect of arcaine, a NMDAr antagonist. Adult male Wistar rats were habituated (pre-exposed) to a fear conditioning training apparatus or to a different context (open field). Immediately after pre-exposure, animals were injected with saline or naloxone (0.5 mg/kg, i.p.) or anti-beta-endorphin antibody (1:500, i.c.v.). Forty eight hours after pre-exposure session, all animals were subjected to fear conditioning acquisition protocol and saline or arcaine (30 mg/kg, i.p.) was administered immediately after training. Testing was carried out 24 h later, and freezing responses due to re-exposure to the training apparatus were recorded. Pre-exposure to the training apparatus prevented the impairment of memory induced by post-training arcaine. Administration of naloxone or anti-beta-endorphin antibody, immediately after pre-exposure to the training apparatus, reinstated the amnesic effect of post-training arcaine. The results suggest that endogenous opioid mechanisms are involved in the pre-exposure-induced loss of the amnestic effect of arcaine.


Asunto(s)
Amnesia/metabolismo , Aprendizaje por Asociación/efectos de los fármacos , Biguanidas/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Miedo/efectos de los fármacos , Receptores Opioides mu/metabolismo , Amnesia/inducido químicamente , Animales , Aprendizaje por Asociación/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Masculino , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA