Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 10(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34579408

RESUMEN

Class III peroxidases (PRXs) are plant-specific enzymes that play key roles in the responses to biotic and abiotic stress during plant growth and development. In addition, some peroxidases also play roles in plant lignification. In this study, a total of 114 PRX (designated PbPRXs) genes were identified in the pear (Pyrus bretschneideri Rehd) genome based on systematic analysis. These PRX genes were divided into 12 groups based on their phylogenetic relationships. We performed systematic bioinformatics analysis of the PRX genes, including analysis of gene structures, conserved motifs, phylogenetic relationships, and gene expression patterns during pear fruit growth. The PbPRXs are unevenly distributed on the 17 pear chromosomes and some of them on other scaffolds. Gene duplication event analysis indicated that whole-genome duplication (WGD) and segmental duplication play key roles in PRX gene amplification. Ka/Ks analysis suggested that most duplicated PbPRXs experienced purifying selection, with limited functional divergence during the duplication events. Furthermore, the analysis indicated that those highly expressed genes might play significant roles in the lignification of cells to form stone cells in pear fruit. We examined the expression of those highly expressed genes during fruit growth using quantitative real-time PCR (qRT-PCR), verifying differential expression patterns at different stages of fruit. This study provides useful information for further functional analysis of the PRX gene family in pears.

2.
Hortic Res ; 7: 59, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377350

RESUMEN

Programmed cell death (PCD) and secondary cell wall (SCW) thickening in pear fruit are accompanied by the deposition of cellulose and lignin to form stone cells. Metacaspase is an important protease for development, tissue renewal and PCD. The understanding of the molecular mechanism whereby pear (Pyrus) metacaspase promotes PCD and cell wall lignification is still limited. In this study, the Metacaspases gene family (PbMCs) from P. bretschneideri was identified. PbMC1a/1b was associated with lignin deposition and stone cell formation by physiological data, semiquantitative real-time polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR). Relative to wild-type (WT) Arabidopsis, the overexpression of PbMC1a/1b increased lignin deposition and delayed growth, thickened the cell walls of vessels, xylary fibers and interfascicular fibers, and increased the expression of lignin biosynthetic genes. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC) and GST pull-down assays indicated that the PbMC1a/1b protein physically interacted with PbRD21. Simultaneously, the transient expression of PbMC1a/1b and PbRD21 led to significant changes in the expression of genes and lignin contents in pear fruits and flesh calli. These results indicate that PbMC1a/1b plays an important role in cell wall lignification, possibly by interacting with PbRD21 to increase the mRNA levels of some lignin synthesis-associated genes and promote the formation of stone cells in pear fruit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA