Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 37(31): 7347-7361, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28663201

RESUMEN

Angelman syndrome (AS) is a debilitating neurodevelopmental disorder caused by loss of function of the maternally inherited UBE3A allele. It is currently unclear how the consequences of this genetic insult unfold to impair neurodevelopment. We reasoned that by elucidating the basis of microcephaly in AS, a highly penetrant syndromic feature with early postnatal onset, we would gain new insights into the mechanisms by which maternal UBE3A loss derails neurotypical brain growth and function. Detailed anatomical analysis of both male and female maternal Ube3a-null mice reveals that microcephaly in the AS mouse model is primarily driven by deficits in the growth of white matter tracts, which by adulthood are characterized by densely packed axons of disproportionately small caliber. Our results implicate impaired axon growth in the pathogenesis of AS and identify noninvasive structural neuroimaging as a potentially valuable tool for gauging therapeutic efficacy in the disorder.SIGNIFICANCE STATEMENT People who maternally inherit a deletion or nonfunctional copy of the UBE3A gene develop Angelman syndrome (AS), a severe neurodevelopmental disorder. To better understand how loss of maternal UBE3A function derails brain development, we analyzed brain structure in a maternal Ube3a knock-out mouse model of AS. We report that the volume of white matter (WM) is disproportionately reduced in AS mice, indicating that deficits in WM development are a major factor underlying impaired brain growth and microcephaly in the disorder. Notably, we find that axons within the WM pathways of AS model mice are abnormally small in caliber. This defect is associated with slowed nerve conduction, which could contribute to behavioral deficits in AS, including motor dysfunction.


Asunto(s)
Síndrome de Angelman/patología , Axones/patología , Microcefalia/patología , Fibras Nerviosas/patología , Ubiquitina-Proteína Ligasas/genética , Sustancia Blanca/patología , Síndrome de Angelman/fisiopatología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microcefalia/fisiopatología , Sustancia Blanca/fisiopatología
2.
Neurotoxicol Teratol ; 47: 80-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25459688

RESUMEN

Prenatal cocaine exposure has been associated with numerous behavioral phenotypes in clinical populations, including impulsivity, reduced attention, alterations in social behaviors, and delayed language and sensory-motor development. Detecting associated changes in brain structure in these populations has proven difficult, and results have been inconclusive and inconsistent. Due to their more controlled designs, animal models may shed light on the neuroanatomical changes caused by prenatal cocaine; however, to maximize clinical relevance, data must be carefully collected using translational methods. The goal of this study was two-fold: (1) to determine if prenatal cocaine alters developmental neuroanatomy using methods that are available to human researchers, specifically structural MRI and diffusion tensor imaging, and (2) to determine the feasibility of rodent in vivo neuroimaging for usage in longitudinal studies of developmental disorders. Cocaine-exposed (prenatal days 1-20, 30mg/kg/day) rat pups were sedated and imaged live using diffusion tensor imaging and postmortem (fixed) using magnetic resonance histology on postnatal day 14. Volume and diffusion properties in whole brain as well as specific regions of interest were then assessed from the resulting images. Whole brain analyses revealed that cocaine-exposed animals showed no change in whole brain volume. Additionally, we found alterations in fractional anisotropy across regions associated with reward processing and emotional regulation, especially in the thalamus and globus pallidus, as well as sex-dependent effects of cocaine in the right cortex. Reductions in fractional anisotropy were paired with reductions only in axial diffusivity, which preliminarily suggests that the changes observed here may be due to axonal damage, as opposed to reductions in myelination of the affected regions/pathways. Our data indicate that prenatal cocaine may target a number of developing brain structures but does not result in overt changes to brain volumes. These results highlight not only the brain alterations that result from prenatal cocaine but also the advancements in live imaging that allow longitudinal study designs in other models.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Cocaína/toxicidad , Inhibidores de Captación de Dopamina/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Análisis de Varianza , Animales , Animales Recién Nacidos , Anisotropía , Imagen de Difusión por Resonancia Magnética , Emociones/fisiología , Femenino , Edad Gestacional , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Recompensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA