Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 18(12): e3001015, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33332391

RESUMEN

Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription.


Asunto(s)
Cápside/metabolismo , VIH-1/metabolismo , Replicación Viral/fisiología , Cápside/química , Cápside/fisiología , Proteínas de la Cápside/genética , Replicación del ADN/fisiología , ADN Viral/metabolismo , Células HEK293 , VIH-1/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Simulación de Dinámica Molecular , Nucleótidos/metabolismo , Permeabilidad , Ácido Fítico/análisis , Ácido Fítico/metabolismo , Virión/genética , Ensamble de Virus/fisiología , Replicación Viral/genética
2.
J Am Chem Soc ; 144(23): 10543-10555, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35638584

RESUMEN

The nucleocapsid (N) protein is one of the four structural proteins of the SARS-CoV-2 virus and plays a crucial role in viral genome organization and, hence, replication and pathogenicity. The N-terminal domain (NNTD) binds to the genomic RNA and thus comprises a potential target for inhibitor and vaccine development. We determined the atomic-resolution structure of crystalline NNTD by integrating solid-state magic angle spinning (MAS) NMR and X-ray diffraction. Our combined approach provides atomic details of protein packing interfaces as well as information about flexible regions as the N- and C-termini and the functionally important RNA binding, ß-hairpin loop. In addition, ultrafast (100 kHz) MAS 1H-detected experiments permitted the assignment of side-chain proton chemical shifts not available by other means. The present structure offers guidance for designing therapeutic interventions against the SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Genoma Viral , Humanos , Proteínas de la Nucleocápside/química , ARN
3.
Proc Natl Acad Sci U S A ; 115(45): 11519-11524, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30333189

RESUMEN

The host factor protein TRIM5α plays an important role in restricting the host range of HIV-1, interfering with the integrity of the HIV-1 capsid. TRIM5 triggers an antiviral innate immune response by functioning as a capsid pattern recognition receptor, although the precise mechanism by which the restriction is imposed is not completely understood. Here we used an integrated magic-angle spinning nuclear magnetic resonance and molecular dynamics simulations approach to characterize, at atomic resolution, the dynamics of the capsid's hexameric and pentameric building blocks, and the interactions with TRIM5α in the assembled capsid. Our data indicate that assemblies in the presence of the pentameric subunits are more rigid on the microsecond to millisecond timescales than tubes containing only hexamers. This feature may be of key importance for controlling the capsid's morphology and stability. In addition, we found that TRIM5α binding to capsid induces global rigidification and perturbs key intermolecular interfaces essential for higher-order capsid assembly, with structural and dynamic changes occurring throughout the entire CA polypeptide chain in the assembly, rather than being limited to a specific protein-protein interface. Taken together, our results suggest that TRIM5α uses several mechanisms to destabilize the capsid lattice, ultimately inducing its disassembly. Our findings add to a growing body of work indicating that dynamic allostery plays a pivotal role in capsid assembly and HIV-1 infectivity.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , VIH-1/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , VIH-1/genética , VIH-1/ultraestructura , Humanos , Macaca mulatta , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas
4.
Sci Adv ; 10(40): eadq3115, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39356759

RESUMEN

Obtaining atomic-level information on components in the cell is a major focus in structural biology. Elucidating specific structural and dynamic features of proteins and their interactions in the cellular context is crucial for understanding cellular processes. We introduce 19F dynamic nuclear polarization (DNP) combined with fast magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy as a powerful technique to study proteins in mammalian cells. We demonstrate our approach on the severe acute respiratory syndrome coronavirus 2 5F-Trp-NNTD protein, electroporated into human cells. DNP signal enhancements of 30- to 40-fold were observed, translating into over 1000-fold experimental time savings. High signal-to-noise ratio spectra were acquired on nanomole quantities of a protein in cells in minutes. 2D 19F-19F dipolar correlation spectra with remarkable sensitivity and resolution were obtained, exhibiting 19F-19F cross peaks associated with fluorine atoms as far as ~10 angstroms apart. This work paves the way for 19F DNP-enhanced MAS NMR applications in cells for probing protein structure, dynamics, and ligand interactions.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , SARS-CoV-2 , Humanos , SARS-CoV-2/química , Resonancia Magnética Nuclear Biomolecular/métodos , Flúor/química , Proteínas Virales/química , Proteínas Virales/metabolismo , Espectroscopía de Resonancia Magnética/métodos , COVID-19/virología
5.
J Magn Reson ; 311: 106680, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31951864

RESUMEN

Despite breakthroughs in MAS NMR hardware and experimental methodologies, sensitivity remains a major challenge for large and complex biological systems. Here, we report that 3-4 fold higher sensitivities can be obtained in heteronuclear-detected experiments, using a novel HCN CPMAS probe, where the sample coil and the electronics operate at cryogenic temperatures, while the sample is maintained at ambient temperatures (BioSolids CryoProbe™). Such intensity enhancements permit recording 2D and 3D experiments that are otherwise time-prohibitive, such as 2D 15N-15N proton-driven spin diffusion and 15N-13C double cross polarization to natural abundance carbon experiments. The benefits of CPMAS CryoProbe-based experiments are illustrated for assemblies of kinesin Kif5b with microtubules, HIV-1 capsid protein assemblies, and fibrils of human Y145Stop and fungal HET-s prion proteins - demanding systems for conventional MAS solid-state NMR and excellent reference systems in terms of spectral quality. We envision that this probe technology will be beneficial for a wide range of applications, especially for biological systems suffering from low intrinsic sensitivity and at physiological temperatures.


Asunto(s)
Cianuro de Hidrógeno/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas de la Cápside/química , Carbono/química , Frío , Escherichia coli/química , Hongos/química , VIH-1/química , Humanos , Indicadores y Reactivos , Cinesinas/química , Microscopía Electrónica de Transmisión , Microtúbulos/química , Microtúbulos/ultraestructura , Proteínas Priónicas/química , Sensibilidad y Especificidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA