Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32300252

RESUMEN

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Asunto(s)
Investigación Biomédica/normas , Transición Epitelial-Mesenquimal , Animales , Movimiento Celular , Plasticidad de la Célula , Consenso , Biología Evolutiva/normas , Humanos , Neoplasias/patología , Terminología como Asunto
3.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300897

RESUMEN

Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.


Asunto(s)
Células Epiteliales , Transición Epitelial-Mesenquimal , Animales , Humanos , Diferenciación Celular , Fibrosis , Organogénesis
4.
J Surg Res ; 270: 169-177, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34687957

RESUMEN

BACKGROUND: New tumor biomarkers are needed to improve the management of colon cancer (CC), the second leading cause of cancer-related deaths in the United States. Carcinoembryonic Antigen (CEA), the translated protein of carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) gene, is used as a biomarker for CC. Cartilage Oligomeric Matrix Protein (COMP) is overexpressed in CC compared to normal colon tissues. This study aims to evaluate the expression of COMP by disease stage, consensus molecular subtype (CMS), its impact on disease outcomes, and comparison to CEACAM5. MATERIALS AND METHODS: RNA-seq data from 456 CC The Cancer Genome Atlas samples and 41 matching control samples were analyzed for COMP expression and CEACAM5 expression. We stratified tumor samples by stage (I-IV), subtype (CMS1-CMS4), tumor location, and Kirsten RAt Sarcoma (KRAS) mutant status and three quartiles were established based on COMP expression. Kaplan Meier survival outcomes were evaluated. RESULTS: COMP expression was significantly higher in tumor samples, with elevation of expression occurring in stage I and significantly increasing in stage IV. Increased COMP expression occurs in CMS4 with relatively low expression in CMS3. No significant expression difference was attributed to tumor location and KRAS mutant status. Compared to CEACAM5, COMP was a stronger molecular marker across stages and subtypes. CMS4 was associated with the high COMP expression, and higher levels of COMP were associated with poorer overall survival, disease-specific survival, and tumor progression-free intervals. CMS2 and 3 were associated with low expression and better survival. CONCLUSION: COMP is a potential molecular biomarker for CC and may be superior to CEA as an indicator of CC.


Asunto(s)
Neoplasias del Colon , Biomarcadores de Tumor/genética , Antígeno Carcinoembrionario , Proteína de la Matriz Oligomérica del Cartílago/genética , Moléculas de Adhesión Celular , Neoplasias del Colon/patología , Proteínas Ligadas a GPI/genética , Humanos , Pronóstico
5.
Biophys J ; 118(5): 1058-1066, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31995740

RESUMEN

Detection of the transition between the two myosin isoforms α- and ß-myosin in living cardiomyocytes is essential for understanding cardiac physiology and pathology. In this study, the differences in symmetry of polarization spectra obtained from α- and ß-myosin in various mammalian ventricles and propylthiouracil-treated rats are explored through polarization-dependent second harmonic generation microscopy. Here, we report for the, to our knowledge, first time that α- and ß-myosin, as protein crystals, possess different symmetries: the former has C6 symmetry, and the latter has C3v. A single-sarcomere line scan further demonstrated that the differences in polarization-spectrum symmetry between α- and ß-myosin came from their head regions: the head and neck domains of α- and ß-myosin account for the differences in symmetry. In addition, the dynamic transition of the polarization spectrum from C6 to C3v line profile was observed in a cell culture in which norepinephrine induced an α- to ß-myosin transition.


Asunto(s)
Miosinas Cardíacas , Sarcómeros , Animales , Miocitos Cardíacos , Miosinas , Ratas , Miosinas Ventriculares
6.
J Surg Res ; 233: 297-303, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30502262

RESUMEN

BACKGROUND: About 1.2 million new cases of colon cancer (CC) and 0.6 million deaths are reported every year, establishing CC as an important contributor to worldwide cancer morbidity and mortality. Although the overall incidence and mortality of CC have declined over the past 3 decades, the number of early-onset colon cancer ([EOCC], patients <50 y old) continues to rise alarmingly. These young patients are often diagnosed at a more advanced stage and tend to have poor survival. Our recently published data showed that the cartilage oligomeric matrix protein (COMP) is overexpressed in early-onset colon cancer patients. COMP is also reported in several cancers to coexpress with epithelial-mesenchymal transition (EMT) transcription factors. Given the role of EMT in cancer metastasis and cell invasion, we assessed the correlation between COMP gene expression and EMT gene expression in CC, and COMP's relationship to patient survival. METHODS: mRNA expression of COMP was compared to that of EMT markers using the UCSC Cancer Genomics Browser. Survival analysis was performed using the UCSC Xena Browser for cancer genomics. RESULTS: Expression analysis revealed coexpression of COMP with the EMT markers CDH2, FN1, VIM, TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, ZEB2, POSTN, MMP2, MMP9, and COL1A1. Samples that were more mesenchymal had higher expression levels of COMP and EMT markers, thus suggesting a potential role of COMP in EMT. Patients with increased COMP expression presented with poorer overall survival compared to patients with no change or reduced COMP expression (P = 0.02). CONCLUSIONS: These findings reveal COMP as a potential biomarker for CC especially in more aggressive CC and CC in young patients, with a likely role in EMT during tumor metastasis and invasion, and a contributing factor to patient survival.


Asunto(s)
Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Proteína de la Matriz Oligomérica del Cartílago/metabolismo , Neoplasias del Colon/patología , Transición Epitelial-Mesenquimal/genética , Adenocarcinoma/mortalidad , Edad de Inicio , Anciano , Anciano de 80 o más Años , Colon/patología , Neoplasias del Colon/mortalidad , Bases de Datos Factuales/estadística & datos numéricos , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/patología , Análisis de Supervivencia
7.
Dev Dyn ; 247(3): 542-554, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28631378

RESUMEN

BACKGROUND: Although normally linked to bone and cartilage development, the Runt-related transcription factor, RUNX2, was reported in the mouse heart during development of the valves. We examined RUNX2 expression and function in the developing avian heart as it related to the epithelial-mesenchymal transition (EMT) in the atrioventricular canal. EMT can be separated into an activation stage involving hypertrophy and cell separation and an invasion stage where cells invade the extracellular matrix. The localization and activity of RUNX2 was explored in relation to these steps in the heart. As RUNX2 was also reported in cancer tissues, we examined its expression in the progression of esophageal cancer in staged tissues. RESULTS: A specific isoform, RUNX2-I, is present and required for EMT by endothelia of the atrioventricular canal. Knockdown of RUNX2-I inhibits the cell-cell separation that is characteristic of initial activation of EMT. Loss of RUNX2-I altered expression of EMT markers to a greater extent during activation than during subsequent cell invasion. Transforming growth factor beta 2 (TGFß2) mediates activation during cardiac endothelial EMT. Consistent with a role in activation, RUNX2-I is regulated by TGFß2 and its activity is independent of similarly expressed Snai2 in regulation of EMT. Examination of RUNX2 expression in esophageal cancer showed its upregulation concomitant with the development of dysplasia and continued expression in adenocarcinoma. CONCLUSIONS: These data introduce the RUNX2-I isoform as a critical early transcription factor mediating EMT in the developing heart after induction by TGFß2. Its expression in tumor tissue suggests a similar role for RUNX2 in the EMT of metastasis. Developmental Dynamics 247:542-554, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/fisiología , Transición Epitelial-Mesenquimal , Animales , Embrión de Pollo , Pollos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Neoplasias/metabolismo , Isoformas de Proteínas , Activación Transcripcional , Factor de Crecimiento Transformador beta
9.
Physiol Rep ; 11(20): e15838, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37849042

RESUMEN

Cardiac ischemic reperfusion injury (IRI) is paradoxically instigated by reestablishing blood-flow to ischemic myocardium typically from a myocardial infarction (MI). Although revascularization following MI remains the standard of care, effective strategies remain limited to prevent or attenuate IRI. We hypothesized that epicardial placement of human placental amnion/chorion (HPAC) grafts will protect against IRI. Using a clinically relevant model of IRI, swine were subjected to 45 min percutaneous ischemia followed with (MI + HPAC, n = 3) or without (MI only, n = 3) HPAC. Cardiac function was assessed by echocardiography, and regional punch biopsies were collected 14 days post-operatively. A deep phenotyping approach was implemented by using histological interrogation and incorporating global proteomics and transcriptomics in nonischemic, ischemic, and border zone biopsies. Our results established HPAC limited the extent of cardiac injury by 50% (11.0 ± 2.0% vs. 22.0 ± 3.0%, p = 0.039) and preserved ejection fraction in HPAC-treated swine (46.8 ± 2.7% vs. 35.8 ± 4.5%, p = 0.014). We present comprehensive transcriptome and proteome profiles of infarct (IZ), border (BZ), and remote (RZ) zone punch biopsies from swine myocardium during the proliferative cardiac repair phase 14 days post-MI. Both HPAC-treated and untreated tissues showed regional dynamic responses, whereas only HPAC-treated IZ revealed active immune and extracellular matrix remodeling. Decreased endoplasmic reticulum (ER)-dependent protein secretion and increased antiapoptotic and anti-inflammatory responses were measured in HPAC-treated biopsies. We provide quantitative evidence HPAC reduced cardiac injury from MI in a preclinical swine model, establishing a potential new therapeutic strategy for IRI. Minimizing the impact of MI remains a central clinical challenge. We present a new strategy to attenuate post-MI cardiac injury using HPAC in a swine model of IRI. Placement of HPAC membrane on the heart following MI minimizes ischemic damage, preserves cardiac function, and promotes anti-inflammatory signaling pathways.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , Embarazo , Porcinos , Humanos , Femenino , Animales , Placenta/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Lesiones Cardíacas/tratamiento farmacológico , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad
10.
Cell Tissue Res ; 347(1): 203-23, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21953136

RESUMEN

The majority of children with congenital heart disease now live into adulthood due to the remarkable surgical and medical advances that have taken place over the past half century. Because of this, adults now represent the largest age group with adult cardiovascular diseases. It includes patients with heart diseases that were not detected or not treated during childhood, those whose defects were surgically corrected but now need revision due to maladaptive responses to the procedure, those with exercise problems and those with age-related degenerative diseases. Because adult cardiovascular diseases in this population are relatively new, they are not well understood. It is therefore necessary to understand the molecular and physiological pathways involved if we are to improve treatments. Since there is a developmental basis to adult cardiovascular disease, transforming growth factor beta (TGFß) signaling pathways that are essential for proper cardiovascular development may also play critical roles in the homeostatic, repair and stress response processes involved in adult cardiovascular diseases. Consequently, we have chosen to summarize the current information on a subset of TGFß ligand and receptor genes and related effector genes that, when dysregulated, are known to lead to cardiovascular diseases and adult cardiovascular deficiencies and/or pathologies. A better understanding of the TGFß signaling network in cardiovascular disease and repair will impact genetic and physiologic investigations of cardiovascular diseases in elderly patients and lead to an improvement in clinical interventions.


Asunto(s)
Rehabilitación Cardiaca , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Envejecimiento/fisiología , Angiotensina II/metabolismo , Animales , Enfermedades Cardiovasculares/terapia , Transición Epitelial-Mesenquimal/fisiología , Expresión Génica , Variación Genética , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Smad/metabolismo
11.
Birth Defects Res C Embryo Today ; 93(4): 298-311, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22271679

RESUMEN

The cellular process of epithelial-mesenchymal cell transition (EMT) is a critical event in development that is reiterated in adult pathologies of metastasis and organ fibrosis. An initial understanding of the cellular and molecular events of this process emerged from an in vitro examination of heart valve development. Explants of the chick atrioventricular valve-forming region were placed on collagen gels and removed to show that EMT was regulated by a tissue interaction. Subsequent studies showed that specific TGFß isoforms and receptors were required and steps of activation and invasion could be distinguished. The assay was modified for mouse hearts and has been used to explore signal transduction and gene expression in both species. The principle advantages of the system are a defined temporal window, when EMT takes place and the ability to isolate cells at various stages of the EMT process. These advantages are largely unavailable in other developmental or adult models. As the mesenchymal cells produced by EMT in the heart are involved in defects found in congenital heart disease, there is also a direct relevance of cardiac EMT to human birth defects. This relationship has been explored in relation to environmental exposures and in a number of genetic models. This review provides both an overview of the findings developed from the assay and protocols to enable the use of the assay by other laboratories. The assay provides a versatile platform to explore roles of specific gene products, drugs, and environmental agents on a critical cellular process.


Asunto(s)
Colágeno , Transición Epitelial-Mesenquimal/fisiología , Corazón/embriología , Modelos Biológicos , Miocardio/citología , Animales , Diferenciación Celular , Embrión de Pollo , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesodermo/citología , Ratones , Miocardio/metabolismo , Transducción de Señal
12.
Birth Defects Res A Clin Mol Teratol ; 88(2): 111-27, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19813261

RESUMEN

BACKGROUND: Previous studies show gene expression alterations in rat embryo hearts and cell lines that correspond to the cardio-teratogenic effects of trichloroethylene (TCE) in animal models. One potential mechanism of TCE teratogenicity may be through altered regulation of calcium homeostatic genes with a corresponding inhibition of cardiac function. It has been suggested that TCE may interfere with the folic acid/methylation pathway in liver and kidney and alter gene regulation by epigenetic mechanisms. According to this hypothesis, folate supplementation in the maternal diet should counteract TCE effects on gene expression in the embryonic heart. APPROACH: To identify transcriptional targets altered in the embryonic heart after exposure to TCE, and possible protective effects of folate, we used DNA microarray technology to profile gene expression in embryonic mouse hearts with maternal TCE exposure and dietary changes in maternal folate. RESULTS: Exposure to low doses of TCE (10 ppb) caused extensive alterations in transcripts encoding proteins involved in transport, ion channel, transcription, differentiation, cytoskeleton, cell cycle, and apoptosis. Exogenous folate did not offset the effects of TCE exposure on normal gene expression, and both high and low levels of folate produced additional significant changes in gene expression. CONCLUSIONS: A mechanism by which TCE induces a folate deficiency does not explain altered gene expression patterns in the embryonic mouse heart. The data further suggest that use of folate supplementation, in the presence of this toxin, may be detrimental and not protective of the developing embryo.


Asunto(s)
Anomalías Inducidas por Medicamentos/genética , Perfilación de la Expresión Génica , Cardiopatías Congénitas/inducido químicamente , Corazón/efectos de los fármacos , Teratógenos/toxicidad , Tricloroetileno/toxicidad , Contaminantes Químicos del Agua/toxicidad , Anomalías Inducidas por Medicamentos/prevención & control , Animales , Apoptosis , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Suplementos Dietéticos/efectos adversos , Femenino , Ácido Fólico/administración & dosificación , Deficiencia de Ácido Fólico/inducido químicamente , Deficiencia de Ácido Fólico/complicaciones , Corazón/crecimiento & desarrollo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/prevención & control , Canales Iónicos/efectos de los fármacos , Canales Iónicos/genética , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Ratones , Organogénesis/efectos de los fármacos , Organogénesis/genética , Embarazo , Ratas , Tricloroetileno/antagonistas & inhibidores , Contaminantes Químicos del Agua/antagonistas & inhibidores
13.
Environ Sci Process Impacts ; 22(3): 824-832, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32159184

RESUMEN

In exploration of congenital heart defects produced by TCE, Hepatocyte Nuclear Factor 4 alpha (HNF4a) transcriptional activity was identified as a central component. TCE exposure altered gene transcription in the chick heart in a non-monotonic pattern where only low dose exposure inhibited transcription by HNF4a. As the chick embryo is non-placental, we examine here HNF4a as a target of TCE in developing mouse embryos. Benfluorex and Bi6015, published agonist and antagonist, respectively, of HNF4a were compared to low dose TCE exposure. Pregnant mice were exposed to 10 ppb (76 nM) TCE, 5 µM Benfluorex, 5 µM Bi6015, or a combination of Bi6015 and TCE in drinking water. Litters (E12) were collected during a sensitive window in heart development. Embryonic hearts were collected, pooled for extraction of RNA and marker expression was examined by quantitative PCR. Multiple markers, previously identified as sensitive to TCE exposure in chicks or as published targets of HNF4a transcription were significantly affected by Benfluorex, Bi6015 and TCE. Activity of TCE and both HNF4a-specific reagents on transcription argues that HNF4a is a component of TCE cardiotoxicity and likely a proximal target of low dose exposure during development. The effectiveness of these reagents after delivery in maternal drinking water suggests that neither maternal metabolism, nor placental transport is protective of exposure.


Asunto(s)
Tricloroetileno/toxicidad , Animales , Femenino , Corazón/embriología , Factor Nuclear 4 del Hepatocito/genética , Ratones , Embarazo
14.
Anticancer Res ; 29(6): 2099-109, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19528470

RESUMEN

BACKGROUND: Transforming growth factor beta (TGF-beta) plays a complex role in breast carcinogenesis. Initially functioning as a tumor suppressor, this cytokine later contributes to the progression of malignant cells by enhancing their invasive and metastatic potential as well as suppressing antitumor immunity. The purpose of this study was to investigate the efficacy of SM16, a novel small molecule ALK5 kinase inhibitor, to treat a highly metastatic, TGF-beta-producing murine mammary carcinoma (4T1). MATERIALS AND METHODS: Mice bearing established 4T1 tumors were treated with SM16 intraperitoneally (i.p.) or orally, and primary and metastatic tumor growth was assessed. RESULTS: SM16 inhibited Smad2 phosphorylation in cultured 4T1 tumor cells as well as primary and metastatic 4T1 tumor tissue. Blockade of TGF-beta signal transduction in 4T1 tumor cells by SM16 prevented TGF-beta-induced morphological changes and inhibited TGF-beta-induced invasion in vitro. When delivered via daily i.p. injection or orally through mouse chow, SM16 inhibited the growth of primary and metastatic 4T1 tumors. Splenocytes isolated from mice on the SM16 diet displayed enhanced IFN-gamma production and antitumor CTL activity. Furthermore, SM16 failed to inhibit the growth and metastasis of established 4T1 tumors in immunodeficient SCID mice. CONCLUSION: Taken together, the data indicate that the antitumor efficacy of SM16 is dependent on an immune-mediated mechanism and that SM16 may represent a safe and effective treatment for metastatic breast cancer.


Asunto(s)
Compuestos de Azabiciclo/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Técnica del Anticuerpo Fluorescente , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Biomed Opt Express ; 10(7): 3183-3195, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31360597

RESUMEN

Detecting the structural changes caused by volume and pressure overload is critical to comprehending the mechanisms of physiologic and pathologic hypertrophy. This study explores the structural changes at the crystallographic level in myosin filaments in volume- and pressure-overloaded myocardia through polarization-dependent second harmonic generation microscopy. Here, for the first time, we report that the ratio of nonlinear susceptibility tensor components d33/d15 increased significantly in volume- and pressure-overloaded myocardial tissues compared with the ratio in normal mouse myocardial tissues. Through cell stretch experiments, we demonstrated that mechanical tension plays an important role in the increase of d33/d15 in volume- and pressure-overloaded myocardial tissues.

16.
Toxicol Lett ; 285: 113-120, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29306027

RESUMEN

Exposure to trichloroethylene (TCE) is linked to formation of congenital heart defects in humans and animals. Prior interactome analysis identified the transcription factor, Hepatocyte Nuclear Factor 4 alpha (HNF4a), as a potential target of TCE exposure. As a role for HNF4a is unknown in the heart, we examined developing avian hearts for HNF4a expression and for sensitivity to TCE and the HNF4a agonist, Benfluorex. In vitro analysis using a HNF4a reporter construct showed both TCE and HFN4a to be antagonists of HNF4a-mediated transcription at the concentrations tested. HNF4a mRNA is expressed transiently in the embryonic heart during valve formation and cardiac development. Embryos were examined for altered gene expression in the presence of TCE or Benfluorex. TCE altered expression of selected mRNAs including HNF4a, TRAF6 and CYP2C45. There was a transition between inhibition and induction of marker gene expression in embryos as TCE concentration increased. Benfluorex was largely inhibitory to selected markers. Echocardiography of exposed embryos showed reduced cardiac function with both TCE and Benfluorex. Cardiac contraction was reduced by 29% and 23%, respectively at 10 ppb. The effects of TCE and Benfluorex on autocrine regulation of HNF4a, selected markers and cardiac function argue for a functional interaction of TCE and HNF4a. Further, the dose-sensitive shift between inhibition and induction of marker expression may explain the nonmonotonic-like dose response observed with TCE exposure in the heart.


Asunto(s)
Contaminantes Ambientales/toxicidad , Corazón/efectos de los fármacos , Factor Nuclear 4 del Hepatocito/genética , Transcripción Genética/efectos de los fármacos , Tricloroetileno/toxicidad , Animales , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Ecocardiografía , Fenfluramina/análogos & derivados , Fenfluramina/farmacología , Genes Reporteros , Corazón/diagnóstico por imagen , Corazón/embriología , Células Hep G2 , Factor Nuclear 4 del Hepatocito/agonistas , Humanos , Miocardio/metabolismo
17.
Cells Tissues Organs ; 185(1-3): 146-56, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17587820

RESUMEN

Epithelial-mesenchymal cell transformation (EMT) is a critical process during development of the heart valves. Transition of endothelial cells into mesenchymal cells in the atrioventricular (AV) canal and the outflow tract regions of the heart form the cardiac cushions that eventually form the heart valves. Collagen gel invasion assay has aided in the identification of molecules that regulate EMT. Among those, transforming growth factor-beta (TGF-beta) ligands and receptors demonstrate a critical role during EMT. In the chick, TGF-beta ligands and some receptors have specific functions during EMT. TGF-beta2 mediates endothelial cell-cell activation and separation, and TGF-beta3 mediates cell invasion into the extracellular matrix. Receptors involved in the EMT process include TGF-beta receptor type II (TBRII), TBRIII, endoglin and the TBRI receptors, ALK2 and ALK5. In contrast, in the mouse model, TGF-beta2 is the only ligand involved in EMT. The TGF-beta2 null mouse has either increased EMT or a mesenchymal cell proliferation after EMT. However, functional studies of TGF-beta1 in vivo and in vitro showed that TGF-beta1 functions in the EMT of the mouse AV canal. Latent TGF-beta-binding protein (LTBP-1) and endoglin have a role in the EMT process. Therefore, TGF-betas mediate cardiac EMT in both embryonic species. Further studies will reveal the identification of ligand and receptor-specific activities.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Células Epiteliales/citología , Mesodermo/citología , Miocardio/citología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Activinas Tipo I/genética , Animales , Embrión de Pollo , Modelos Biológicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética
18.
Life Sci ; 80(15): 1395-402, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17261315

RESUMEN

Mammalian cell attachment studies were conducted on a variety of common microchip surfaces for potential use in cell based biosensors. COS-7 cell attachment to Au, Pt or ITO, per unit area was greater than to SiO(2) surfaces. The number of cells that would attach was essentially maximized 3 h after cell seeding. HL-1 cells attached more readily to surfaces precoated with fibronectin, but by 3 h equivalent number of cells had attached independent of fibronectin precoating. Inclusion of serum in media during the initial period of attachment decreased the number of COS-7 cells attached to SiO(2) surfaces, but no dependence on serum was seen for ITO surfaces. The number of cells attached per unit area varied with the composition of the surface. However, no differences were observed in the percentage of cells transfected with a green fluorescent protein gene, or in the level of reporter gene expression over the population of transfected cells on ITO, SiO(2), Pt, Ag, or Au surfaces. Similar FACS analysis of transfected Hep G2 cells revealed lower levels of both transfection efficiency and levels of GFP fluorescence. Hep G2 cells plated on Ag did not remain attached for analysis, but there were no significant differences between tissue culture plastic and the other biosensor surfaces in the percentage of cells transfected. This suggests that, in general, cells will attach to the various conducting and nonconducting biosensor surfaces studied and will provide comparable data in reporter gene expression assays.


Asunto(s)
Técnicas Biosensibles , Células COS/fisiología , Animales , Proteínas Sanguíneas/química , Adhesión Celular , Línea Celular , Chlorocebus aethiops , Fibronectinas/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Metales , Microcomputadores , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Silicio , Propiedades de Superficie , Transfección
19.
J Cardiothorac Surg ; 12(1): 37, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526044

RESUMEN

INTRODUCTION: Randomized and nonrandomized clinical trials have tried to assess whether or not TMR patients experience an increase in myocardial perfusion. However there have been inconsistencies reported in the literature due to the use of different nuclear imaging modalities to test this metric. The primary purpose of this meta-analysis was to determine whether SPECT, MUGA and PET scans demonstrate changes in myocardial perfusion between lased and non-lased subjects and whether laser type affects myocardial perfusion. The secondary purpose was to examine the overall effect of laser therapy on clinical outcomes including survival, hospital re-admission and angina reduction. METHODS: Sixteen studies were included in the primary endpoint analysis after excluding all other non-imaging TMR papers. Standardized mean difference was used as the effect size for all quantitative outcomes and log odds ratio was used as the effect size for all binary outcomes. RESULTS: Statistically significant improvements in myocardial perfusion were observed between control and treatment groups in myocardial perfusion at 6-month follow up using PET imaging with a porcine model. However non-significant differences were observed in patients at 3 and 12 months using SPECT, PET or MUGA scans. Both CO2 and Ho:YAG laser systems demonstrated an increase in myocardial perfusion however this effect was not statistically significant. In addition both laser types displayed statistically significant decreases in patient angina at 3, 6 and 12 months but non-significant increases in survival rates and decreases in hospital re-admissions. CONCLUSION: In order to properly assess myocardial perfusion in TMR subjects, subendocardial perfusion needs to be analyzed via nuclear imaging. PET scans can provide this level of sensitivity and should be utilized in future studies to monitor and detect perfusion changes in lased and non-lased subjects.


Asunto(s)
Enfermedad de la Arteria Coronaria/cirugía , Perfusión/métodos , Tomografía de Emisión de Positrones/métodos , Revascularización Transmiocárdica con Láser/métodos , Animales , Enfermedad de la Arteria Coronaria/diagnóstico , Humanos
20.
J Cardiothorac Surg ; 12(1): 80, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28882138

RESUMEN

BACKGROUND: Temporary mechanical circulatory support device without sternotomy has been highly advocated for severe cardiogenic shock patient but little is known when coupled with amniotic stem cell therapy. CASE PRESENTATION: This case reports the first dual therapy of temporary left ventricular extracorporeal device CentriMag with distal banding technique and human amniotic stem cell injection for treating a severe refractory cardiogenic shock of an 68-year-old female patient. A minimally-invasive off-pump LVAD was established by draining from the left ventricle and returning to the right axillary artery with distal arterial banding to prevent right upper extremity hyperperfusion. Amniotic stem cells were injected intramyocardially at the left ventricular apex, lateral wall, inferior wall, and right subclavian vein. CONCLUSION: The concomitant use of the temporary minimally-invasive off-pump CentriMag placement and stem cell therapy not only provided an alternative to cardiopulmonary bypass and full-median sternotomy procedures but may have also synergistically enhanced myocardial reperfusion and regeneration.


Asunto(s)
Amnios/citología , Corazón Auxiliar , Choque Cardiogénico/terapia , Trasplante de Células Madre/métodos , Femenino , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA