RESUMEN
DNMT3A mutations occur in â¼25% of acute myeloid leukemia (AML) patients. The most common mutation, DNMT3AR882H, has dominant negative activity that reduces DNA methylation activity by â¼80% in vitro. To understand the contribution of DNMT3A-dependent methylation to leukemogenesis, we performed whole-genome bisulfite sequencing of primary leukemic and non-leukemic cells in patients with or without DNMT3AR882 mutations. Non-leukemic hematopoietic cells with DNMT3AR882H displayed focal methylation loss, suggesting that hypomethylation antedates AML. Although virtually all AMLs with wild-type DNMT3A displayed CpG island hypermethylation, this change was not associated with gene silencing and was essentially absent in AMLs with DNMT3AR882 mutations. Primary hematopoietic stem cells expanded with cytokines were hypermethylated in a DNMT3A-dependent manner, suggesting that hypermethylation may be a response to, rather than a cause of, cellular proliferation. Our findings suggest that hypomethylation is an initiating phenotype in AMLs with DNMT3AR882, while DNMT3A-dependent CpG island hypermethylation is a consequence of AML progression.
Asunto(s)
Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Leucemia Mieloide Aguda/genética , Células de la Médula Ósea/patología , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Epigénesis Genética , Humanos , Leucemia Mieloide Aguda/patología , Mutación , Análisis de Secuencia de ADNRESUMEN
ABSTRACT: Subgroup analysis from the POLARIX trial of polatuzumab vedotin plus chemotherapy for untreated large B-cell lymphoma suggests greater efficacy among patients with activated B-cell subtype disease. Both preclinical and additional clinical evidence support this interaction between cell-of-origin and polatuzumab efficacy.
Asunto(s)
Inmunoconjugados , Linfoma de Células B Grandes Difuso , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Anticuerpos Monoclonales/efectos adversos , Inmunoconjugados/efectos adversos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Rituximab/uso terapéuticoRESUMEN
BACKGROUND: Smoldering multiple myeloma (SMM), an asymptomatic precursor of multiple myeloma (MM), carries a variable risk of progression to MM. There is little consensus on the efficacy or optimal timing of treatment in SMM. We systematically reviewed the landscape of all clinical trials in SMM. We compared the efficacy of treatment regimens studied in SMM to results from these regimens when used in newly diagnosed multiple myeloma (NDMM), to determine whether the data suggest deeper responses in SMM versus NDMM. METHODS: All prospective interventional clinical trials for SMM, including published studies, meeting abstracts, and unpublished trials listed on ClinicalTrials.gov up to April 1, 2023, were identified. Trial-related variables were captured, including treatment strategy and efficacy results. Relevant clinical endpoints were defined as overall survival (OS) and quality of life. RESULTS: Among 45 SMM trials identified, 38 (84.4%) assessed active myeloma drugs, while 7 (15.6%) studied bone-modifying agents alone. Of 18 randomized trials in SMM, only one (5.6%) had a primary endpoint of OS; the most common primary endpoint was progression-free survival (nâ =â 7, 38.9%). Among 32 SMM trials with available results, 9 (28.1%) met their prespecified primary endpoint, of which 5 were single-arm studies. Six treatment regimens were tested in both SMM and NDMM; 5 regimens yielded a lower rate of very good partial response rate or better (≥VGPR) in SMM compared to the corresponding NDMM trial (32% vs 63%, 43% vs 53%, 40% vs 63%, 86% vs 89%, 92% vs 95%, and 94% vs 87%, respectively). CONCLUSION: In this systematic review of all prospective interventional clinical trials in SMM, we found significant variability in trial design, including randomization status, primary endpoints, and types of intervention used. Despite the statistical limitations, comparison of treatment regimens revealed no compelling evidence that the treatment is more effective when introduced early in SMM compared to NDMM.
RESUMEN
Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Niño , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Células Asesinas Naturales , Leucemia Mieloide Aguda/terapia , Trasplante Homólogo , Donante no EmparentadoRESUMEN
Antibody-drug conjugates (ADCs) comprise a unique class of chemoimmunotherapy agents, incorporating cytotoxic payloads covalently linked to a monoclonal antibody via specialized linkers. This strategy attempts to exploit antibody-antigen specificity to selectively deliver a potent 'warhead' payload to tumor cells (Figure), while sparing nontumor antigen-negative cells. Decades of development have culminated in the recent approvals of a handful of ADCs across multiple tumor types. ADCs for the treatment of lymphoma are particularly attractive due in part to the favorable spectrum of cell surface markers uniquely expressed on lymphocytes compared with other tissues. Here we discuss general principles of ADC design, including antigen/antibody, payload, and linker selection. We highlight the clinical successes of the 2 approved ADCs for treatment of lymphomas: brentuximab vedotin (Adcetris) and polatuzumab vedotin (Polivy). Finally, we describe several ADC agents currently under development for lymphoma, including emerging efficacy and toxicity data from early-stage clinical trials.
Asunto(s)
Antineoplásicos/administración & dosificación , Inmunoconjugados/administración & dosificación , Linfoma/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos , Humanos , Linfoma/inmunología , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
The FDA's directive to deal with delayed confirmatory trials: lessons from pralatrexate and belinostat for T-cell lymphoma.
RESUMEN
Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.
Asunto(s)
Diferenciación Celular , Neoplasias Colorrectales , Memoria Inmunológica , Células Asesinas Naturales , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Humanos , Animales , Ratones , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Interferón gamma/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Ratones Endogámicos NOD , FemeninoRESUMEN
The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rßhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.
Asunto(s)
Antígenos CD8 , Proliferación Celular , Interleucina-15 , Células Asesinas Naturales , Activación de Linfocitos , Humanos , Antígenos CD8/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/genética , Interleucina-15/inmunología , Interleucina-15/metabolismo , Interleucina-15/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismoRESUMEN
ABSTRACT: Personalized cancer vaccines designed to target neoantigens represent a promising new treatment paradigm in oncology. In contrast to classical idiotype vaccines, we hypothesized that "polyvalent" vaccines could be engineered for the personalized treatment of follicular lymphoma (FL) using neoantigen discovery by combined whole-exome sequencing (WES) and RNA sequencing (RNA-seq). Fifty-eight tumor samples from 57 patients with FL underwent WES and RNA-seq. Somatic and B-cell clonotype neoantigens were predicted and filtered to identify high-quality neoantigens. B-cell clonality was determined by the alignment of B-cell receptor (BCR) CDR3 regions from RNA-seq data, grouping at the protein level, and comparison with the BCR repertoire from healthy individuals using RNA-seq data. An average of 52 somatic mutations per patient (range, 2-172) were identified, and ≥2 (median, 15) high-quality neoantigens were predicted for 56 of 58 FL samples. The predicted neoantigen peptides were composed of missense mutations (77%), indels (9%), gene fusions (3%), and BCR sequences (11%). Building off of these preclinical analyses, we initiated a pilot clinical trial using personalized neoantigen vaccination combined with PD-1 blockade in patients with relapsed or refractory FL (#NCT03121677). Synthetic long peptide vaccines targeting predicted high-quality neoantigens were successfully synthesized for and administered to all 4 patients enrolled. Initial results demonstrate feasibility, safety, and potential immunologic and clinical responses. Our study suggests that a genomics-driven personalized cancer vaccine strategy is feasible for patients with FL, and this may overcome prior challenges in the field. This trial was registered at www.ClinicalTrials.gov as #NCT03121677.
Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Linfoma Folicular , Medicina de Precisión , Humanos , Linfoma Folicular/terapia , Linfoma Folicular/inmunología , Linfoma Folicular/genética , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Antígenos de Neoplasias/inmunología , Medicina de Precisión/métodos , Persona de Mediana Edad , Femenino , Masculino , Anciano , Adulto , Secuenciación del Exoma , MutaciónRESUMEN
Activation of natural killer (NK) cells with the cytokines interleukin-12 (IL-12), IL-15, and IL-18 induces their differentiation into memory-like (ML) NK cells; however, the underlying epigenetic and transcriptional mechanisms are unclear. By combining ATAC-seq, CITE-seq, and functional analyses, we discovered that IL-12/15/18 activation results in two main human NK fates: reprogramming into enriched memory-like (eML) NK cells or priming into effector conventional NK (effcNK) cells. eML NK cells had distinct transcriptional and epigenetic profiles and enhanced function, whereas effcNK cells resembled cytokine-primed cNK cells. Two transcriptionally discrete subsets of eML NK cells were also identified, eML-1 and eML-2, primarily arising from CD56bright or CD56dim mature NK cell subsets, respectively. Furthermore, these eML subsets were evident weeks after transfer of IL-12/15/18-activated NK cells into patients with cancer. Our findings demonstrate that NK cell activation with IL-12/15/18 results in previously unappreciated diverse cellular fates and identifies new strategies to enhance NK therapies.
Asunto(s)
Citocinas , Epigénesis Genética , Memoria Inmunológica , Células Asesinas Naturales , Humanos , Células Asesinas Naturales/inmunología , Epigénesis Genética/inmunología , Memoria Inmunológica/inmunología , Citocinas/inmunología , Regulación de la Expresión Génica/inmunología , Diferenciación Celular/inmunología , Interleucina-15/inmunologíaRESUMEN
Several key advances in the treatment of B-cell non-Hodgkin lymphoma (B-NHL) over the past two decades have strategically exploited B-cell lineage markers suitable for targeting by immunotherapies. First, the addition of the anti-CD20 monoclonal antibody (mAb) rituximab to a range of standard therapies conferred remarkable outcomes improvements in diverse settings, perhaps most prominently an overall survival advantage in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Subsequently, multiple chimeric antigen receptor (CAR) T-cell therapies targeting CD19 have revolutionized the treatment of relapsed/refractory (rel/ref) DLBCL and are active in other B-NHL subtypes as well. Most recently, the longstanding aspiration to exploit patients' endogenous T-cells to combat lymphoma has been achieved via T-cell redirecting therapies such as bispecific antibodies (BsAbs) that incorporate dual targeting of a T-cell antigen such as CD3 plus a B-cell antigen such as CD19 or CD20 expressed by the tumor. These novel agents have demonstrated impressive activity as monotherapies in patients with heavily pre-treated, rel/ref B-NHL of a variety of subtypes. Now, myriad clinical trials are exploring combinations of T-cell redirectors with targeted therapies, antibody-drug conjugates, conventional chemotherapy, and even new immunotherapies. Here, we highlight key landmarks in the development of T-cell redirecting therapies for the treatment of B-NHL, emerging evidence and lessons from recent clinical trials, and exciting new directions in this arena.
RESUMEN
Chimeric antigen receptor (CAR) T-cells are a cellular immunotherapy with remarkable efficacy in treating multiple hematologic malignancies but they are associated with extremely high prices that are, for many countries, prohibitively expensive. As their use increases both for hematologic malignancies and other indications, and large numbers of new cellular therapies are developed, novel approaches will be needed both to reduce the cost of therapy, and to pay for them. We review the many factors that lead to the high cost of CAR T-cells and offer proposals for reform.
Asunto(s)
Neoplasias Hematológicas , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Neoplasias Hematológicas/terapia , Inmunoterapia , Linfocitos TRESUMEN
BACKGROUND: Subgroup analyses in clinical trials assess intervention effects on specific patient subgroups, ensuring generalizability. However, they are usually only able to generate hypotheses rather than definitive conclusions. This study examined the prevalence and characteristics of post hoc subgroup analysis in oncology. METHODS: We systematically reviewed published subgroup analyses from 2000 to 2022. We included articles presenting secondary, post hoc, or subgroup analyses of interventional clinical trials in oncology, cancer survivorship, or cancer screening, published separately from the original clinical trial publication. We collected cancer type, year of publication, where and how subgroup analyses were reported, and funding. RESULTS: Out of 16â487 screened publications, 1612 studies were included, primarily subgroup analyses of treatment trials for solid tumors (82%). Medical writers contributed to 31% of articles, and 58% of articles reported conflicts of interest. Subgroup analyses increased significantly over time, with 695 published between 2019 and 2022, compared to 384 from 2000 to 2014. Gastrointestinal tumors (25%) and lymphoid lineage tumors (39%) were the most frequently studied solid and hematological malignancies, respectively. Industry funding and reporting of conflicts of interest increased over time. Subgroup analyses often neglected to indicate their secondary nature in the title. Most authors were from high-income countries, most commonly North America (45%). CONCLUSIONS: This study demonstrates the rapidly growing use of post hoc subgroup analysis of oncology clinical trials, revealing that the majority are supported by pharmaceutical companies, and they frequently fail to indicate their secondary nature in the title. Given the known methodological limitations of subgroup analyses, caution is recommended among authors, readers, and reviewers when conducting and interpreting these studies.
Asunto(s)
Neoplasias , Humanos , Neoplasias/epidemiología , Neoplasias/terapia , Oncología Médica , Proyectos de InvestigaciónRESUMEN
Follicular lymphoma (FL) is clinically heterogeneous, with select patients tolerating extended watch-and-wait, whereas others require prompt treatment, suffer progression of disease within 24 months of treatment (POD24), and/or experience aggressive histologic transformation (t-FL). Because our understanding of the relationship between genetic alterations in FL and patient outcomes remains limited, we conducted a clinicogenomic analysis of 370 patients with FL or t-FL (from Cancer and Leukemia Group B/Alliance trials 50402/50701/50803, or real-world cohorts from Washington University School of Medicine, Cleveland Clinic, or University of Miami). FL subsets by grade, stage, watch-and-wait, or POD24 status did not differ by mutation burden, whereas mutation burden was significantly higher in relapsed/refractory (rel/ref) FL and t-FL than in newly diagnosed (dx) FL. Nonetheless, mutation burden in dx FL was not associated with frontline progression-free survival (PFS). CREBBP was the only gene more commonly mutated in FL than in t-FL yet mutated CREBBP was associated with shorter frontline PFS in FL. Mutations in 20 genes were more common in rel/ref FL or t-FL than in dx FL, including 6 significantly mutated genes (SMGs): STAT6, TP53, IGLL5, B2M, SOCS1, and MYD88. We defined a mutations associated with progression (MAP) signature as ≥2 mutations in these 7 genes (6 rel/ref FL or t-FL SMGs plus CREBBP). Patients with dx FL possessing a MAP signature had shorter frontline PFS, revealing a 7-gene set offering insight into FL progression risk potentially more generalizable than the m7-Follicular Lymphoma International Prognostic Index (m7-FLIPI), which had modest prognostic value in our cohort. Future studies are warranted to validate the poor prognosis associated with a MAP signature in dx FL, potentially facilitating novel trials specifically in this high-risk subset of patients.
Asunto(s)
Linfoma Folicular , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Factores de Riesgo , Pronóstico , Supervivencia sin Progresión , MutaciónRESUMEN
Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.
Asunto(s)
Inmunidad Innata , Proteínas de Dominio T Box , Humanos , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Células Asesinas Naturales/metabolismo , Factores de Transcripción/metabolismo , Citocinas/metabolismoRESUMEN
PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with low response rates to frontline PD-1 blockade. Natural killer (NK) cells are a promising cellular therapy for T cell therapy-refractory cancers, but are frequently dysfunctional in patients with HNSCC. Strategies are needed to enhance NK cell responses against HNSCC. We hypothesized that memory-like (ML) NK cell differentiation, tumor targeting with cetuximab, and engineering with an anti-EphA2 (Erythropoietin-producing hepatocellular receptor A2) chimeric antigen receptor (CAR) enhance NK cell responses against HNSCC. EXPERIMENTAL DESIGN: We generated ML NK and conventional (c)NK cells from healthy donors, then evaluated their ability to produce IFNγ, TNF, degranulate, and kill HNSCC cell lines and primary HNSCC cells, alone or in combination with cetuximab, in vitro and in vivo using xenograft models. ML and cNK cells were engineered to express anti-EphA2 CAR-CD8A-41BB-CD3z, and functional responses were assessed in vitro against HNSCC cell lines and primary HNSCC tumor cells. RESULTS: Human ML NK cells displayed enhanced IFNγ and TNF production and both short- and long-term killing of HNSCC cell lines and primary targets, compared with cNK cells. These enhanced responses were further improved by cetuximab. Compared with controls, ML NK cells expressing anti-EphA2 CAR had increased IFNγ and cytotoxicity in response to EphA2+ cell lines and primary HNSCC targets. CONCLUSIONS: These preclinical findings demonstrate that ML differentiation alone or coupled with either cetuximab-directed targeting or EphA2 CAR engineering were effective against HNSCCs and provide the rationale for investigating these combination approaches in early phase clinical trials for patients with HNSCC.
Asunto(s)
Neoplasias de Cabeza y Cuello , Receptores Quiméricos de Antígenos , Humanos , Cetuximab/farmacología , Cetuximab/uso terapéutico , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral , Células Asesinas Naturales , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Anticuerpos Monoclonales/metabolismo , Diferenciación CelularRESUMEN
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE: Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/genética , Células de Reed-Sternberg/metabolismo , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Nuclear Pequeño/metabolismoRESUMEN
In the POLARIX trial, pola-R-CHP demonstrated improved progression-free survival (PFS) compared to R-CHOP in untreated intermediate- to high-risk DLBCL. We surveyed practicing clinicians regarding their interpretation of POLARIX, including impressions of efficacy, safety, and cost. Of 174 respondents, most from academic centers (82%) in the United States (57%), 70% stated they would not replace R-CHOP with pola-R-CHP due to insufficient PFS difference, lack of overall survival benefit, and excessive cost. Respondents not recommending pola-R-CHP expressed concerns about financial implications for both society and patients. We observed considerable heterogeneity in both study interpretation and plans for real-world implementation of pola-R-CHP.
RESUMEN
Due to the evolving use of haploidentical donor grafts in hematopoietic cell transplantation, there is increased need to better understand the risks and benefits of using bone marrow versus peripheral blood grafts, as well as how specific pre-transplantation conditioning regimens impact patient safety and treatment outcomes. We performed a retrospective analysis of 38 patients at two centers who underwent haploidentical hematopoietic cell transplantation using fludarabine plus melphalan-based conditioning regimens with post-transplant cyclophosphamide and peripheral blood donor grafts. We observed an unexpectedly high rate of early non-relapse mortality and severe cytokine release syndrome. The poor outcomes with 1-year overall survival of 34%, disease-free survival of 29%, and non-relapse mortality of 34% motivate us to reconsider the appropriateness of the combination of fludarabine and melphalan conditioning with T-cell replete peripheral blood grafts in the setting of haploidentical hematopoietic cell transplant with post-transplant cyclophosphamide.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Ciclofosfamida/efectos adversos , Ciclofosfamida/uso terapéutico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Melfalán/efectos adversos , Estudios Retrospectivos , Acondicionamiento Pretrasplante/efectos adversos , Vidarabina/efectos adversos , Vidarabina/análogos & derivadosRESUMEN
Natural killer (NK) cells are innate lymphoid cells that eliminate cancer cells, produce cytokines, and are being investigated as a nascent cellular immunotherapy. Impaired NK cell function, expansion, and persistence remain key challenges for optimal clinical translation. One promising strategy to overcome these challenges is cytokine-induced memory-like (ML) differentiation, whereby NK cells acquire enhanced antitumor function after stimulation with interleukin-12 (IL-12), IL-15, and IL-18. Here, reduced-intensity conditioning (RIC) for HLA-haploidentical hematopoietic cell transplantation (HCT) was augmented with same-donor ML NK cells on day +7 and 3 weeks of N-803 (IL-15 superagonist) to treat patients with relapsed/refractory acute myeloid leukemia (AML) in a clinical trial (NCT02782546). In 15 patients, donor ML NK cells were well tolerated, and 87% of patients achieved a composite complete response at day +28, which corresponded with clearing high-risk mutations, including TP53 variants. NK cells were the major blood lymphocytes for 2 months after HCT with 1104-fold expansion (over 1 to 2 weeks). Phenotypic and transcriptional analyses identified donor ML NK cells as distinct from conventional NK cells and showed that ML NK cells persisted for over 2 months. ML NK cells expressed CD16, CD57, and high granzyme B and perforin, along with a unique transcription factor profile. ML NK cells differentiated in patients had enhanced ex vivo function compared to conventional NK cells from both patients and healthy donors. Overall, same-donor ML NK cell therapy with 3 weeks of N-803 support safely augmented RIC haplo-HCT for AML.