Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30420558

RESUMEN

As a consequence of impaired glucose or fatty acid metabolism, bioenergetic stress in skeletal muscles may trigger myopathy and rhabdomyolysis. Genetic mutations causing loss of function of the LPIN1 gene frequently lead to severe rhabdomyolysis bouts in children, though the metabolic alterations and possible therapeutic interventions remain elusive. Here, we show that lipin1 deficiency in mouse skeletal muscles is sufficient to trigger myopathy. Strikingly, muscle fibers display strong accumulation of both neutral and phospholipids. The metabolic lipid imbalance can be traced to an altered fatty acid synthesis and fatty acid oxidation, accompanied by a defect in acyl chain elongation and desaturation. As an underlying cause, we reveal a severe sarcoplasmic reticulum (SR) stress, leading to the activation of the lipogenic SREBP1c/SREBP2 factors, the accumulation of the Fgf21 cytokine, and alterations of SR-mitochondria morphology. Importantly, pharmacological treatments with the chaperone TUDCA and the fatty acid oxidation activator bezafibrate improve muscle histology and strength of lipin1 mutants. Our data reveal that SR stress and alterations in SR-mitochondria contacts are contributing factors and potential intervention targets of the myopathy associated with lipin1 deficiency.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Enfermedades Musculares/genética , Fosfatidato Fosfatasa/genética , Retículo Sarcoplasmático/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Chaperonas Moleculares/farmacología , Chaperonas Moleculares/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/patología , Ácido Tauroquenodesoxicólico/uso terapéutico
2.
Mol Cell ; 58(6): 1001-14, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26004228

RESUMEN

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Secuencia de Aminoácidos , Animales , Factor Inductor de la Apoptosis/genética , Línea Celular Tumoral , Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Humanos , Immunoblotting , Ratones Noqueados , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas/genética , Interferencia de ARN , Factores de Tiempo
3.
PLoS Biol ; 16(1): e2003992, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29370167

RESUMEN

In endothermic species, heat released as a product of metabolism ensures stable internal temperature throughout the organism, despite varying environmental conditions. Mitochondria are major actors in this thermogenic process. Part of the energy released by the oxidation of respiratory substrates drives ATP synthesis and metabolite transport, but a substantial proportion is released as heat. Using a temperature-sensitive fluorescent probe targeted to mitochondria, we measured mitochondrial temperature in situ under different physiological conditions. At a constant external temperature of 38 °C, mitochondria were more than 10 °C warmer when the respiratory chain (RC) was fully functional, both in human embryonic kidney (HEK) 293 cells and primary skin fibroblasts. This differential was abolished in cells depleted of mitochondrial DNA or treated with respiratory inhibitors but preserved or enhanced by expressing thermogenic enzymes, such as the alternative oxidase or the uncoupling protein 1. The activity of various RC enzymes was maximal at or slightly above 50 °C. In view of their potential consequences, these observations need to be further validated and explored by independent methods. Our study prompts a critical re-examination of the literature on mitochondria.


Asunto(s)
Mitocondrias/fisiología , Termogénesis/fisiología , Fibroblastos/fisiología , Colorantes Fluorescentes , Células HEK293 , Calor , Humanos , Membranas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Cultivo Primario de Células , Piel , Temperatura , Proteína Desacopladora 1/metabolismo
4.
Hum Mol Genet ; 27(22): 3881-3900, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30084972

RESUMEN

Mutations in paralogous mitochondrial proteins CHCHD2 and CHCHD10 cause autosomal dominant Parkinson Disease (PD) and Amyotrophic Lateral Sclerosis/Frontotemporal Dementia (ALS/FTD), respectively. Using newly generated CHCHD2, CHCHD10 and CHCHD2/10 double knockout cell lines, we find that the proteins are partially functionally redundant, similarly distributed throughout the mitochondrial cristae, and form heterodimers. Unexpectedly, we also find that CHCHD2/CHCHD10 heterodimerization increases in response to mitochondrial stress. This increase is driven by differences in the proteins' stability and mutual affinity: CHCHD2 is preferentially stabilized by loss of mitochondrial membrane potential, and CHCHD10 oligomerization depends on CHCHD2 expression. Exploiting the dependence of CHCHD10 oligomerization on CHCHD2, we developed a heterodimer incorporation assay and demonstrate that CHCHD2 and CHCHD10 with disease-causing mutations readily form heterodimers. As we also find that both proteins are highly expressed in human Substantia nigra and cortical pyramidal neurons, mutant CHCHD2 and CHCHD10 may directly interact with their wild-type paralogs in the context of PD and ALS/FTD pathogenesis. Together, these findings demonstrate that differences in the stability and mutual affinity of CHCHD2 and CHCHD10 regulate their heterodimerization in response to mitochondrial distress, revealing an unanticipated link between PD and ALS/FTD pathogenesis.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/genética , Enfermedad de Parkinson/genética , Factores de Transcripción/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Proteínas de Unión al ADN , Dimerización , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/patología , Proteínas Mitocondriales/química , Mutación , Enfermedad de Parkinson/fisiopatología , Células Piramidales/metabolismo , Células Piramidales/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Factores de Transcripción/química
5.
Eur J Nucl Med Mol Imaging ; 47(6): 1510-1517, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31834447

RESUMEN

PURPOSE: Germline mutations in genes encoding succinate dehydrogenase (SDH) are frequent in patients with pheochromocytoma and paraganglioma (PPGL). They lead to SDH inactivation, mediating a massive accumulation of succinate, which constitutes a highly specific biomarker of SDHx-mutated tumors when measured in vitro. In a recent pilot study, we showed that magnetic resonance spectroscopy (1H-MRS) optimized for succinate detection (SUCCES) could detect succinate in vivo in both allografted mouse models and PPGL patients. The objective of this study was to prospectively assess the diagnostic performances of 1H-MRS SUCCES sequence for the identification of SDH deficiency in PPGL patients. METHODS: Forty-nine patients presenting with 50 PPGLs were prospectively enrolled in our referral center for 1H-MRS SUCCES. Two observers blinded to the clinical characteristics and genetic status analyzed the presence of a succinate peak and confronted the results to a composite gold standard combining PPGL genetic testing and/or in vitro protein analyses in the tumor. RESULTS: A succinate peak was observed in 20 tumors, all of which had proven SDH deficiency using the gold standard (17 patients with germline SDHx mutations, 2 with a somatic SDHD mutation, and 1 with negative SDHB IHC and SDH loss of function). A false negative result was observed in 3 tumors. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 1H-MRS SUCCES were respectively 87%, 100%, 100%, 90%, and 94%. CONCLUSIONS: Detection of succinate using 1H-MRS is a highly specific and sensitive hallmark of SDH-deficiency in PPGLs.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Succinato Deshidrogenasa/genética , Neoplasias de las Glándulas Suprarrenales/diagnóstico por imagen , Neoplasias de las Glándulas Suprarrenales/genética , Animales , Mutación de Línea Germinal , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Paraganglioma/diagnóstico por imagen , Paraganglioma/genética , Proyectos Piloto , Ácido Succínico
6.
Biochem Biophys Res Commun ; 511(3): 658-664, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30826061

RESUMEN

Mitochondria play a vital role in proliferation and differentiation and their remodeling in the course of differentiation is related to the variable energy and metabolic needs of the cell. In this work, we show a distinctive mitochondrial remodeling in human induced pluripotent stem cells differentiated into neural or mesenchymal progenitors. While leading to upregulation of the citrate synthase-α-ketoglutarate dehydrogenase segment of the Krebs cycle and increased respiratory chain activities and respiration in the mesenchymal stem cells, the remodeling in the neural stem cells resulted in downregulation of α-ketoglutarate dehydrogenase, upregulation of isocitrate dehydrogenase 2 and the accumulation of α-ketoglutarate. The distinct, lineage-specific changes indicate an involvement of these Krebs cycle enzymes in cell differentiation.


Asunto(s)
Ciclo del Ácido Cítrico , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Diferenciación Celular , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/citología , Modelos Biológicos , Células-Madre Neurales/citología
7.
Neurobiol Dis ; 92(Pt A): 55-63, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-25684538

RESUMEN

The major progress made in the identification of the molecular bases of mitochondrial disease has revealed the huge diversity of their origin. Today up to 300 mutations were identified in the mitochondrial genome and about 200 nuclear genes are possibly mutated. In this review, we highlight a number of features specific to mitochondria which possibly participate in the complexity of these diseases. These features include both the complexity of mitochondrial genetics and the multiplicity of the roles ensured by the organelles in numerous aspects of cell life and death. This spectacular complexity presumably accounts for the present lack of an efficient therapy in the vast majority of cases.


Asunto(s)
Síndrome de Kearns-Sayre/genética , Síndrome de Kearns-Sayre/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Animales , Humanos , Síndrome de Kearns-Sayre/terapia , Miopatías Mitocondriales/terapia
8.
Hum Mol Genet ; 23(8): 2078-93, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24293544

RESUMEN

Mitochondrial dysfunction is a significant factor in human disease, ranging from systemic disorders of childhood to cardiomyopathy, ischaemia and neurodegeneration. Cytochrome oxidase, the terminal enzyme of the mitochondrial respiratory chain, is a frequent target. Lower eukaryotes possess alternative respiratory-chain enzymes that provide non-proton-translocating bypasses for respiratory complexes I (single-subunit reduced nicotinamide adenine dinucleotide dehydrogenases, e.g. Ndi1 from yeast) or III + IV [alternative oxidase (AOX)], under conditions of respiratory stress or overload. In previous studies, it was shown that transfer of yeast Ndi1 or Ciona intestinalis AOX to Drosophila was able to overcome the lethality produced by toxins or partial knockdown of complex I or IV. Here, we show that AOX can provide a complete or substantial rescue of a range of phenotypes induced by global or tissue-specific knockdown of different cIV subunits, including integral subunits required for catalysis, as well as peripheral subunits required for multimerization and assembly. AOX was also able to overcome the pupal lethality produced by muscle-specific knockdown of subunit CoVb, although the rescued flies were short lived and had a motility defect. cIV knockdown in neurons was not lethal during development but produced a rapidly progressing locomotor and seizure-sensitivity phenotype, which was substantially alleviated by AOX. Expression of Ndi1 exacerbated the neuronal phenotype produced by cIV knockdown. Ndi1 expressed in place of essential cI subunits produced a distinct residual phenotype of delayed development, bang sensitivity and male sterility. These findings confirm the potential utility of alternative respiratory chain enzymes as tools to combat mitochondrial disease, while indicating important limitations thereof.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Deficiencia de Citocromo-c Oxidasa/complicaciones , Discapacidades del Desarrollo/prevención & control , Drosophila melanogaster/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Infertilidad Masculina/prevención & control , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Western Blotting , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/metabolismo , Discapacidades del Desarrollo/etiología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Técnicas para Inmunoenzimas , Infertilidad Masculina/etiología , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Enfermedades Neurodegenerativas/etiología , Oxidorreductasas/genética , Fenotipo , Proteínas de Plantas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Hum Mol Genet ; 23(9): 2440-6, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24334767

RESUMEN

Malignant pheochromocytoma (PCC) and paraganglioma (PGL) are mostly caused by germline mutations of SDHB, encoding a subunit of succinate dehydrogenase. Using whole-exome sequencing, we recently identified a mutation in the FH gene encoding fumarate hydratase, in a PCC with an 'SDH-like' molecular phenotype. Here, we investigated the role of FH in PCC/PGL predisposition, by screening for germline FH mutations in a large international cohort of patients. We screened 598 patients with PCC/PGL without mutations in known PCC/PGL susceptibility genes. We searched for FH germline mutations and large deletions, by direct sequencing and multiplex ligation-dependent probe amplification methods. Global alterations in DNA methylation and protein succination were assessed by immunohistochemical staining for 5-hydroxymethylcytosine (5-hmC) and S-(2-succinyl) cysteine (2SC), respectively. We identified five pathogenic germline FH mutations (four missense and one splice mutation) in five patients. Somatic inactivation of the second allele, resulting in a loss of fumarate hydratase activity, was demonstrated in tumors with FH mutations. Low tumor levels of 5-hmC, resembling those in SDHB-deficient tumors, and positive 2SC staining were detected in tumors with FH mutations. Clinically, metastatic phenotype (P = 0.007) and multiple tumors (P = 0.02) were significantly more frequent in patients with FH mutations than those without such mutations. This study reveals a new role for FH in susceptibility to malignant and/or multiple PCC/PGL. Remarkably, FH-deficient PCC/PGLs display the same pattern of epigenetic deregulation as SDHB-mutated malignant PCC/PGL. Therefore, we propose that mutation screening for FH should be included in PCC/PGL genetic testing, at least for tumors with malignant behavior.


Asunto(s)
Fumarato Hidratasa/genética , Mutación de Línea Germinal/genética , Paraganglioma/genética , Feocromocitoma/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Exones/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Am J Hum Genet ; 93(2): 384-9, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23910460

RESUMEN

Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report mutations (c.288G>T [p.Trp96Cys] and c.643C>T [p.Leu215Phe]) in CYC1, encoding the cytochrome c1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c. Cytochrome c1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals' fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity.


Asunto(s)
Citocromos c1/genética , Citocromos c/genética , Hiperglucemia/genética , Cetosis/genética , Mutación , Subunidades de Proteína/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Preescolar , Consanguinidad , Citocromos c/metabolismo , Citocromos c1/metabolismo , Transporte de Electrón , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Prueba de Complementación Genética , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/enzimología , Hiperglucemia/fisiopatología , Insulina/farmacología , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Cetosis/tratamiento farmacológico , Cetosis/enzimología , Cetosis/fisiopatología , Masculino , Mitocondrias/enzimología , Mitocondrias/genética , Modelos Moleculares , Datos de Secuencia Molecular , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Piel/enzimología , Piel/patología
12.
Clin Sci (Lond) ; 130(6): 393-407, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26846578

RESUMEN

As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Animales , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/terapia , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Estructura Molecular
13.
PLoS Genet ; 9(1): e1003182, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300486

RESUMEN

Cyanide-resistant non-phosphorylating respiration is known in mitochondria from plants, fungi, and microorganisms but is absent in mammals. It results from the activity of an alternative oxidase (AOX) that conveys electrons directly from the respiratory chain (RC) ubiquinol pool to oxygen. AOX thus provides a bypath that releases constraints on the cytochrome pathway and prevents the over-reduction of the ubiquinone pool, a major source of superoxide. RC dysfunctions and deleterious superoxide overproduction are recurrent themes in human pathologies, ranging from neurodegenerative diseases to cancer, and may be instrumental in ageing. Thus, preventing RC blockade and excess superoxide production by means of AOX should be of considerable interest. However, because of its energy-dissipating properties, AOX might produce deleterious effects of its own in mammals. Here we show that AOX can be safely expressed in the mouse (MitAOX), with major physiological parameters being unaffected. It neither disrupted the activity of other RC components nor decreased oxidative phosphorylation in isolated mitochondria. It conferred cyanide-resistance to mitochondrial substrate oxidation and decreased reactive oxygen species (ROS) production upon RC blockade. Accordingly, AOX expression was able to support cyanide-resistant respiration by intact organs and to afford prolonged protection against a lethal concentration of gaseous cyanide in whole animals. Taken together, these results indicate that AOX expression in the mouse is innocuous and permits to overcome a RC blockade, while reducing associated oxidative insult. Therefore, the MitAOX mice represent a valuable tool in order to investigate the ability of AOX to counteract the panoply of mitochondrial-inherited diseases originating from oxidative phosphorylation defects.


Asunto(s)
Complejo IV de Transporte de Electrones , Mitocondrias , Oxidorreductasas , Especies Reactivas de Oxígeno , Animales , Ciona intestinalis/genética , Transporte de Electrón/genética , Transporte de Electrón/fisiología , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Oxidación-Reducción , Fosforilación Oxidativa , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
14.
Biochim Biophys Acta ; 1837(8): 1330-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24699309

RESUMEN

Seventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of observations, and the variable subcellular location of a number of its constitutive protein components is now well recognized, although yet unexplained. Nonetheless, the most striking observations have been made in the recent period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and human pathology.


Asunto(s)
Ciclo del Ácido Cítrico , Fumaratos/metabolismo , Ingeniería Metabólica , Succinato Deshidrogenasa/genética , Ácido Succínico/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Fumaratos/química , Histonas/genética , Histonas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Succinato Deshidrogenasa/metabolismo , Ácido Succínico/química
15.
Hum Mol Genet ; 22(14): 2894-904, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23552101

RESUMEN

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease characterized by ataxia, variously associating heart disease, diabetes mellitus and/or glucose intolerance. It results from intronic expansion of GAA triplet repeats at the FXN locus. Homozygous expansions cause silencing of the FXN gene and subsequent decreased expression of the encoded mitochondrial frataxin. Detailed analyses in fibroblasts and neuronal tissues from FRDA patients have revealed profound cytoskeleton anomalies. So far, however, the molecular mechanism underlying these cytoskeleton defects remains unknown. We show here that gene silencing spreads in cis over the PIP5K1B gene in cells from FRDA patients (circulating lymphocytes and primary fibroblasts), correlating with expanded GAA repeat size. PIP5K1B encodes phosphatidylinositol 4-phosphate 5-kinase ß type I (pip5k1ß), an enzyme functionally linked to actin cytoskeleton dynamics that phosphorylates phosphatidylinositol 4-phosphate [PI(4)P] to generate phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Accordingly, loss of pip5k1ß function in FRDA cells was accompanied by decreased PI(4,5)P2 levels and was shown instrumental for destabilization of the actin network and delayed cell spreading. Knockdown of PIP5K1B in control fibroblasts using shRNA reproduced abnormal actin cytoskeleton remodeling, whereas over-expression of PIP5K1B, but not FXN, suppressed this phenotype in FRDA cells. In addition to provide new insights into the consequences of the FXN gene expansion, these findings raise the question whether PIP5K1B silencing may contribute to the variable manifestation of this complex disease.


Asunto(s)
Citoesqueleto/metabolismo , Ataxia de Friedreich/enzimología , Silenciador del Gen , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Citoesqueleto/genética , Fibroblastos/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Linfocitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Expansión de Repetición de Trinucleótido , Frataxina
16.
Hum Mol Genet ; 22(12): 2387-99, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23427148

RESUMEN

Goldberg-Shprintzen syndrome (GOSHS, MIM #609460) is an autosomal recessive disorder of intellectual disability, specific facial gestalt and Hirschsprung's disease (HSCR). In 2005, homozygosity mapping in a large consanguineous family identified KIAA1279 as the disease-causing gene. KIAA1279 encodes KIF-binding protein (KBP), whose function is incompletely understood. Studies have identified either the mitochondria or the cytoskeleton as the site of KBP localization and interactions. To better delineate the KIAA1279-related clinical spectrum and the molecular mechanisms involved in GOSHS, we studied five new patients from three different families. The homozygous KIAA1279 mutations in these patients (p.Arg90X, p.Ser200X or p.Arg202IlefsX2) led to nonsense-mediated mRNA decay and loss of KBP function. Despite the absence of functional KBP, respiratory chain complex activity in patient fibroblasts was normal. KBP did not co-localize with mitochondria in control human fibroblasts, but interacted with the actin and tubulin cytoskeleton. KBP expression directly affected neurite growth in a neuron-like cell line (human neuroblastoma SH-SY5Y), in keeping with the central (polymicrogyria) and enteric (HSCR) neuronal developmental defects seen in GOSHS patients. The KBP interactions with actin filaments and microtubules (MTs) demonstrated in our study constitute the first evidence that an actin MT cross-link protein is involved in neuronal development in humans.


Asunto(s)
Anomalías Craneofaciales/metabolismo , Enfermedad de Hirschsprung/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Actinas/genética , Actinas/metabolismo , Adolescente , Adulto , Niño , Anomalías Craneofaciales/genética , Femenino , Francia , Enfermedad de Hirschsprung/genética , Humanos , Lactante , Irak , Masculino , Microtúbulos/genética , Mutación , Proteínas del Tejido Nervioso/genética , Linaje , Unión Proteica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Población Blanca/genética
18.
Proc Natl Acad Sci U S A ; 108(1): 314-8, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173220

RESUMEN

Carney-Stratakis syndrome, an inherited condition predisposing affected individuals to gastrointestinal stromal tumor (GIST) and paraganglioma, is caused by germline mutations in succinate dehydrogenase (SDH) subunits B, C, or D, leading to dysfunction of complex II of the electron transport chain. We evaluated the role of defective cellular respiration in sporadic GIST lacking mutations in KIT or PDGFRA (WT). Thirty-four patients with WT GIST without a personal or family history of paraganglioma were tested for SDH germline mutations. WT GISTs lacking demonstrable SDH genetic inactivation were evaluated for SDHB expression by immunohistochemistry and Western blotting and for complex II activity. For comparison, SDHB expression was also determined in KIT mutant and neurofibromatosis-1-associated GIST, and complex II activity was also measured in SDH-deficient paraganglioma and KIT mutant GIST; 4 of 34 patients (12%) with WT GIST without a personal or family history of paraganglioma had germline mutations in SDHB or SDHC. WT GISTs lacking somatic mutations or deletions in SDH subunits had either complete loss of or substantial reduction in SDHB protein expression, whereas most KIT mutant GISTs had strong SDHB expression. Complex II activity was substantially decreased in WT GISTs. WT GISTs, particularly those in younger patients, have defects in SDH mitochondrial complex II, and in a subset of these patients, GIST seems to arise from germline-inactivating SDH mutations. Testing for germline mutations in SDH is recommended in patients with WT GIST. These findings highlight a potential central role of SDH dysregulation in WT GIST oncogenesis.


Asunto(s)
Respiración de la Célula/fisiología , Tumores del Estroma Gastrointestinal/enzimología , Predisposición Genética a la Enfermedad/genética , Proteínas Proto-Oncogénicas c-kit/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Succinato Deshidrogenasa/genética , Adolescente , Western Blotting , Respiración de la Célula/genética , Análisis Mutacional de ADN , Complejo II de Transporte de Electrones/genética , Complejo II de Transporte de Electrones/metabolismo , Mutación de Línea Germinal/genética , Humanos , Inmunohistoquímica , Paraganglioma/enzimología , Polimorfismo de Nucleótido Simple , Subunidades de Proteína/genética , Succinato Deshidrogenasa/metabolismo , Síndrome
19.
Nat Metab ; 6(2): 323-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409325

RESUMEN

Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.


Asunto(s)
Glicerol , Glicerofosfatos , Metabolismo de los Lípidos , Humanos , Glicerol/metabolismo , Etanolaminas , Fosfatos
20.
J Biol Chem ; 287(46): 38729-40, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23007390

RESUMEN

Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an "emergency shutdown" system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.


Asunto(s)
Glucosa/metabolismo , Mitocondrias/metabolismo , Animales , Ciona intestinalis/metabolismo , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Citometría de Flujo/métodos , Células HEK293 , Humanos , Microscopía Fluorescente/métodos , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Fosforilación Oxidativa , Oxidorreductasas/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA