Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Horm Behav ; 157: 105452, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977023

RESUMEN

Social hierarchies are a prevalent feature of all animal groups, and an individual's rank within the group can significantly affect their overall health, typically at the greatest expense of the lowest-ranked individuals, or omegas. These subjects have been shown to exhibit various stress-related phenotypes, such as increased hypothalamic-pituitary axis activity and increased amygdalar corticotropin-releasing factor levels compared to higher-ranked subjects. However, these findings have been primarily characterized in males and in models requiring exhibition of severe aggression. The goals of the current study, therefore, were to characterize the formation and maintenance of social hierarchies using the tube test and palatable liquid competition in same-sex groups of male and female C57BL/6 J mice. We also aimed to examine the effects of tube test-determined social rank on plasma and hypothalamic oxytocin and vasopressin levels, peptides with established roles in social behaviors and the stress response. Lastly, we assessed the effects of environmental enrichment and length of testing on the measures outlined above. Overall, we demonstrated that males and females develop social hierarchies and that these hierarchies can be determined using the tube test. While we were unable to establish a consistent connection between peptide levels and social rank, we observed transient changes in these peptides reflecting complex interactions between social rank, sex, environment, and length of testing. We also found that many male and female omegas began to exhibit passive coping behavior after repeated tube test losses, demonstrating the potential of this assay to serve as a model of chronic, mild psychosocial stress.


Asunto(s)
Jerarquia Social , Conducta Social , Humanos , Animales , Ratones , Masculino , Femenino , Ratones Endogámicos C57BL , Agresión/fisiología , Hipotálamo
2.
Addict Biol ; 26(2): e12893, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32160654

RESUMEN

Alcohol use disorder affects millions of people each year. Currently approved pharmacotherapies have limited success in treating this disorder. Evidence suggests that this lack of success is partly due to how these pharmacotherapies are tested in preclinical settings. The vast majority of preclinical studies assessing the effects of pharmacotherapies on alcohol or drug self-administration are done in individually housed animals. However, it is known that alcohol and drug intake are heavily influenced by social settings. Here, we adapted radio frequency tracking technology to determine the effects of oxytocin, a potential therapy for alcohol use disorder, on alcohol consumption in socially housed male and female prairie voles. Voluntary alcohol consumption in these animals resulted in high daily alcohol intakes, blood ethanol concentrations that are considered intoxicating, and central changes in FosB immunoreactivity, indicative of changes in neural activity. Prairie voles that received oxytocin temporarily reduced alcohol consumption but not alcohol preference, compared with control prairie voles regardless whether their cagemates received a similar treatment or not. Our results demonstrate that oxytocin can decrease consummatory behaviors in the presence of peers that are not receiving this treatment, and therefore, its potential use in clinical trials is warranted. Moreover, effectiveness of other pharmacotherapies in preclinical studies can be tested in mixed-treatment socially housed animals similarly to clinical studies in humans.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Oxitocina/farmacología , Animales , Arvicolinae , Nivel de Alcohol en Sangre , Femenino , Masculino
3.
Horm Behav ; 120: 104676, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31927017

RESUMEN

Available pharmacotherapies to treat alcohol use disorder (AUD) show limited efficacy. Preclinical studies in mice and rats suggested that antagonists of the corticotropin releasing factor receptor 1 (CRFR1) could be more efficacious for such treatment. However, clinical trials with CRFR1 antagonists were not successful. While a number of potential explanations for this translational failure have been suggested, we hypothesized that the lack of success in clinical trials could be in part due to different neuroanatomical organization of the CRFR1 system in mice and rats versus humans. The CRF system in prairie voles (Microtus ochrogaster), a socially monogamous rodent species, also shows differences in organization from mice and rats. To test our hypothesis, we compared the efficacy of a potent CRFR1 antagonist, CP-376,395, to modulate alcohol drinking in male and female prairie voles versus male and female C57BL/6J mice using an almost identical 2-bottle choice drinking procedure. CP-376,375 (10 and 20 mg/kg, i.p.) significantly decreased alcohol intake (but not alcohol preference) in mice, but not prairie voles. Furthermore, administration of this antagonist (20 mg/kg, i.p.) prior to the partner preference test (PPT) decreased partner preference (PP) in male prairie voles. These findings support our hypothesis that the greater efficacy of CRFR1 antagonists to suppress alcohol consumption in mice and rats versus other mammalian species could be due to the differences in organization of the CRFR1 system between species. They further indicate that activity of the CRFR1 system is necessary for the formation of pair-bonds, but not consumption of high doses of alcohol. Overall, we suggest that testing potential pharmacotherapies should not rely only on studies in mice and rats.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Aminopiridinas/farmacología , Etanol/farmacología , Apareamiento , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Animales , Arvicolinae , Conducta de Elección/efectos de los fármacos , Resistencia a Medicamentos/efectos de los fármacos , Femenino , Humanos , Masculino , Preferencia en el Apareamiento Animal/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratas , Sensibilidad y Especificidad
4.
EMBO J ; 34(12): 1674-86, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25964433

RESUMEN

The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-ß (Aß) production. In cells, CRF treatment increases Aß production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by ß-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activity in vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aß. These data collectively link CRF to increased Aß through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aß and in some cases preferentially increase Aß42 via complex effects on γ-secretase.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/biosíntesis , Hormona Liberadora de Corticotropina/metabolismo , Modelos Biológicos , Estrés Fisiológico/fisiología , Enfermedad de Alzheimer/etiología , Análisis de Varianza , Animales , Western Blotting , AMP Cíclico/metabolismo , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Inmunoprecipitación , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Sistema Hipófiso-Suprarrenal/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Hormona Liberadora de Corticotropina/metabolismo
5.
Alcohol Alcohol ; 54(4): 353-360, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31062856

RESUMEN

AIMS: Discordant heavy alcohol use is a risk factor for disruption of intimate partner relationships. Modeling these relationships in prairie voles indicates that biological effects of alcohol can contribute to this risk. In particular, alcohol consumption disrupted an established preference for a female partner in male prairie voles if the partner was drinking water, but not if the partner was drinking alcohol. The current study investigated the effects of alcohol consumption on pair bonds in female prairie voles. METHODS: Female and male prairie voles established pair bonds during 1 week of cohabitation. Following cohabitation, females and their partners were put into mesh-divided cages where they were given access to 10% ethanol and water or only water for 1 week. Pair bonds in female prairie voles were tested using the partner preference test (PPT). Following the PPT, we examined oxytocin, vasopressin and FosB immunoreactivity across several brain regions. RESULTS: Female prairie voles consumed more alcohol if their male partner was also drinking alcohol, but not if their partner was drinking water. During PPT, females preferred their partner over a stranger, regardless of their partner's drinking status. Alcohol consumption decreased oxytocin immunoreactivity in the paraventricular nucleus of the hypothalamus and increased FosB immunoreactivity in the centrally projecting Edinger-Westphal nucleus. CONCLUSIONS: Established partner preference in female prairie voles is resistant to alcohol consumption. This finding suggests that the risk for disruption of intimate partner relationships in females is not mediated by a decreased motivation to be with their partners.


Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Encéfalo/fisiología , Conducta de Elección/fisiología , Etanol/administración & dosificación , Apareamiento , Animales , Arvicolinae , Encéfalo/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Femenino , Masculino
6.
Alcohol Alcohol ; 54(6): 625-638, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31509854

RESUMEN

AIMS: A close and bidirectional relationship between alcohol consumption and pain has been previously reported and discussed in influential reviews. The goal of the present narrative review is to provide an update on the developments in this field in order to guide future research objectives. METHODS: We evaluated both epidemiological and neurobiological literature interrogating the relationship between alcohol use and pain for the presence of significant effects. We outlined studies on interactions between alcohol use and pain using both self-reports and objective experimental measures and discussed potential underlying mechanisms of these interactions. RESULTS: Epidemiological, preclinical and clinical literature point to three major interactions between alcohol use and pain: (a) alcohol use leading to hyperalgesia, (b) alcohol use moderating pain and hyperalgesia and (c) chronic pain as a risk factor predisposing to alcohol relapse. Neurobiological studies using animal models to assess these interactions have transitioned from mostly involuntary modes of experimenter-controlled alcohol administration to self-administration procedures, and increasingly indicate that neuronal circuits implicated in both withdrawal and anticipation stages of alcohol use disorder also have a role in chronic pain. Mechanistically, alterations in GABA, glutamate, the corticotropin-releasing factor system, endogenous opioids and protein kinase C appear to play crucial roles in this maladaptive overlap. CONCLUSIONS: Many of the principles explaining the interactions between alcohol and pain remain on a strong foundation, but continuing progress in modeling these interactions and underlying systems will provide a clearer basis for understanding, and ultimately treating, the damaging aspects of this interaction.


Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Alcoholismo/psicología , Nocicepción/efectos de los fármacos , Dolor/psicología , Placer , Consumo de Bebidas Alcohólicas/epidemiología , Alcoholismo/epidemiología , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Humanos , Dolor/complicaciones , Dolor/epidemiología
7.
Proc Natl Acad Sci U S A ; 111(16): 6052-7, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711424

RESUMEN

Alcohol use and abuse profoundly influences a variety of behaviors, including social interactions. In some cases, it erodes social relationships; in others, it facilitates sociality. Here, we show that voluntary alcohol consumption can inhibit male partner preference (PP) formation (a laboratory proxy for pair bonding) in socially monogamous prairie voles (Microtus ochrogaster). Conversely, female PP is not inhibited, and may be facilitated by alcohol. Behavior and neurochemical analysis suggests that the effects of alcohol on social bonding are mediated by neural mechanisms regulating pair bond formation and not alcohol's effects on mating, locomotor, or aggressive behaviors. Several neuropeptide systems involved in the regulation of social behavior (especially neuropeptide Y and corticotropin-releasing factor) are modulated by alcohol drinking during cohabitation. These findings provide the first evidence to our knowledge that alcohol has a direct impact on the neural systems involved in social bonding in a sex-specific manner, providing an opportunity to explore the mechanisms by which alcohol affects social relationships.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Arvicolinae/fisiología , Apareamiento , Caracteres Sexuales , Agresión , Animales , Femenino , Masculino , Preferencia en el Apareamiento Animal/fisiología , Neuropéptidos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
8.
Neurobiol Learn Mem ; 131: 192-200, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27101734

RESUMEN

Drug addicts experience strong craving episodes in response to drug-associated cues. Attenuating these responses using pharmacological or behavioral approaches could aid recovery from addiction. Cue-induced drug seeking can be modeled using the conditioned place preference procedure (CPP). Our previous work showed that conditioned place preference (CPP) can be induced by administration of increasing doses of morphine in rhesus monkeys. Here, we investigated whether expression of morphine-induced CPP can be attenuated by inhibiting activity of insular cortex or by repeated unreinforced exposures to the CPP test. The insula has been demonstrated to be involved in addiction to several drugs of abuse. To test its role in morphine CPP, bilateral cannulae were implanted into the insula in seven adult monkeys. The CPP was established using a biased apparatus by intramuscular injections of morphine at increasing doses (1.5, 3.0 and 4.5mg/kg) for each monkey. After the monkeys established morphine CPP, their insulae were reversibly inactivated by bilateral microinjection with 5% lidocaine (40µl) prior to the post-conditioning test (expression) of CPP using a within-subject design. The microinjections of lidocaine failed to affect CPP expression when compared to saline injections. We subsequently investigated morphine-associated memory during six episodes of CPP tests performed in these monkeys over the following 75.0±0.2months. While the preference score showed a declining trend with repeated testing, morphine-induced CPP was maintained even on the last test performed at 75months post-conditioning. This observation indicated strong resistance of morphine-induced memories to extinction in rhesus monkeys. Although these data do not confirm involvement of insula in morphine-induced CPP, our observation that drug-associated memories can be maintained over six drug-free years following initial experience with morphine has important implications for treatment of drug addiction using extinction therapy.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Extinción Psicológica/fisiología , Memoria/fisiología , Morfina/farmacología , Narcóticos/farmacología , Animales , Lidocaína/administración & dosificación , Lidocaína/farmacología , Macaca mulatta , Morfina/administración & dosificación , Narcóticos/administración & dosificación , Factores de Tiempo , Bloqueadores del Canal de Sodio Activado por Voltaje/administración & dosificación , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
9.
Alcohol Clin Exp Res ; 40(8): 1617-26, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27426857

RESUMEN

BACKGROUND: Evidence indicates that the cerebellum plays a role in genetic predilection to excessive alcohol (ethanol [EtOH]) consumption in rodents and humans, but the molecular mechanisms mediating such predilection are not understood. We recently determined that EtOH has opposite actions (enhancement or suppression) on tonic GABAA receptor (GABAA R) currents in cerebellar granule cells (GCs) in low- and high-EtOH-consuming rodents, respectively, and proposed that variation in GC tonic GABAA R current responses to EtOH contributes to genetic variation in EtOH consumption phenotype. METHODS: Voltage-clamp recordings of GCs in acutely prepared slices of cerebellum were used to evaluate the effect of EtOH on GC tonic GABAA R currents in another high-EtOH-consuming rodent, prairie voles (PVs). RESULTS: EtOH (52 mM) suppressed the magnitude of the tonic GABAA R current in 57% of cells, had no effect in 38% of cells, and enhanced the tonic GABAA R current in 5% of cells. This result is similar to GCs from high-EtOH-consuming C57BL/6J (B6) mice, but it differs from the enhancement of tonic GABAA R currents by EtOH in low-EtOH-consuming DBA/2J (D2) mice and Sprague Dawley (SD) rats. EtOH suppression of tonic GABAA R currents was not affected by the sodium channel blocker, tetrodotoxin (500 nM), and was independent of the frequency of phasic GABAA R-mediated currents, suggesting that suppression is mediated by postsynaptic actions on GABAA Rs, rather than a reduction of GABA release. Finally, immunohistochemical analysis of neuronal nitric oxide synthase (nNOS; which can mediate EtOH enhancement of GABA release) demonstrated that nNOS expression in the GC layer of PV cerebellum was similar to the levels seen in B6 mice, both being significantly reduced relative to D2 mice and SD rats. CONCLUSIONS: Combined, these data highlight the GC GABAA R response to EtOH in another species, the high-EtOH-consuming PV, which correlates with EtOH consumption phenotype and further implicates the GC GABAA R system as a contributing mechanism to high EtOH consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Cerebelo/citología , Cerebelo/metabolismo , Etanol/administración & dosificación , Genotipo , Receptores de GABA-A/metabolismo , Animales , Arvicolinae , Cerebelo/efectos de los fármacos , Femenino , Masculino , Técnicas de Cultivo de Órganos , Especificidad de la Especie
10.
Alcohol Alcohol ; 50(2): 132-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25451237

RESUMEN

AIMS: Stress neurocircuitry may modulate the relationship between alcohol drinking and chronic pain. The corticotropin-releasing factor (CRF) system is crucial for regulation of stress responses. The current study aimed to elucidate the role of the endogenous CRF ligand Urocortin 3 (Ucn3) in the relationship between alcohol drinking behavior and chronic pain using a genetic approach. METHODS: Ucn3 (KO) and wildtype (WT) littermates were subjected to a 24-h access drinking procedure prior to and following induction of chronic inflammatory pain. RESULTS: Ucn3 KO mice displayed significantly increased ethanol intake and preference compared with WT across the time course. There were no long-term effects of chronic pain on alcohol drinking behavior, regardless of genotype, nor any evidence for alcohol-induced analgesia. CONCLUSION: The increased drinking in Ucn3 KO supports a role for this peptide in alcohol-related behavior. These data suggest the necessity for more research exploring the relationship between alcohol drinking, chronic pain and the CRF system in rodent models.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Conducta Animal , Dolor Crónico/metabolismo , Urocortinas/genética , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/psicología , Animales , Conducta de Elección , Dolor Crónico/psicología , Femenino , Inflamación , Masculino , Ratones , Ratones Noqueados , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Urocortinas/metabolismo
11.
Alcohol Clin Exp Res ; 38(9): 2436-44, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25257292

RESUMEN

BACKGROUND: Alcohol use and abuse patterns have created a need for novel treatment models. Current research has turned its focus on reward pathways associated with intrinsic necessities, such as feeding. Theories suggest that drugs of abuse seize control of natural reward pathways and dysregulate normal function, leading to chronic addiction. One such pathway involving the hunger stimulating peptide, ghrelin, is the focus of our study. METHODS: Male C57BL/6J mice were randomly assigned to groups and treated with vehicle or a ghrelin antagonist, either [D-Lys(3) ]-GHRP-6 (DLys) or JMV2959. Three experiments tested ghrelin antagonism using different doses; experiment 1 tested 12 mg/kg JMV2959; experiment 2 tested 15 mg/kg DLys; experiment 3 tested 9 mg/kg JMV2959. Using a 2-bottle choice 24-hour access paradigm, data were collected for ethanol intake, preference, water intake, and food intake at 4 and 24 hours after injection. RESULTS: Experiment 1 showed that 12 mg/kg of JMV2959 decreased ethanol, water, and food intake, without affecting preference. Experiment 2 showed that 15 mg/kg of DLys decreased ethanol intake, preference, and water intake only on the first day of treatment. Experiment 3 showed that 9 mg/kg of JMV2959 decreased only ethanol and food intake. No change was seen during deprivation, and JMV2959 was still effective at reducing ethanol intake upon reintroduction. Despite the change in food intake, there were no differences in body weight throughout the experiments. It should be noted that the majority of significant effects were only found 4 hours postinjection. CONCLUSIONS: The results show that compounds that block ghrelin receptor activity are effective at decreasing ethanol intake. However, DLys was only effective at reducing intake and preference on the first day, suggesting a quick tolerance and selectivity for ethanol. JMV2959 consistently reduced ethanol intake, but at the higher dose also reduced all other consummatory behaviors. Thus, ghrelin antagonists provide a viable potential for treatment of alcohol abuse disorders, but further research is needed to determine an appropriate dose and administration paradigm.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Glicina/análogos & derivados , Oligopéptidos/uso terapéutico , Receptores de Ghrelina/antagonistas & inhibidores , Triazoles/uso terapéutico , Consumo de Bebidas Alcohólicas/metabolismo , Animales , Ingestión de Líquidos/fisiología , Ingestión de Alimentos/fisiología , Etanol/administración & dosificación , Glicina/farmacología , Glicina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/farmacología , Distribución Aleatoria , Receptores de Ghrelina/metabolismo , Resultado del Tratamiento , Triazoles/farmacología
12.
Curr Addict Rep ; 11(2): 327-341, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38915732

RESUMEN

Purpose of review: Stress is associated with alcohol drinking, and epidemiological studies document the comorbidity of alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD), with higher comorbid prevalence in females than in males. The aim of this paper is to highlight information related to sex differences in stress-enhanced alcohol drinking from clinical studies and from preclinical studies utilizing an animal model of traumatic stress. Recent findings: Stress is associated with alcohol drinking and relapse in males and females, but there are sex differences in the alcohol-related adaptation of stress pathways and in the association of different prefrontal regions with stress-induced anxiety. The predator stress model of traumatic stress produced enhanced alcohol drinking in a subgroup of stress-sensitive male and female animals, which could be associated with sex and subgroup differences in stress axis responsivity, behavioral responses to predator odors, and epigenetic mechanisms engaged by traumatic experiences. Summary: While additional studies in females are necessary, existing clinical and preclinical evidence suggests that biological mechanisms underlying stress-enhanced drinking likely differ between males and females. Thus, effective treatment strategies may differ between the sexes.

13.
Eur J Pain ; 28(4): 578-598, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37985943

RESUMEN

BACKGROUND: Social interactions with subjects experiencing pain can increase nociceptive sensitivity in observers, even without direct physical contact. In previous experiments, extended indirect exposure to soiled bedding from mice with alcohol withdrawal-related hyperalgesia enhanced nociception in their conspecifics. This finding suggested that olfactory cues could be sufficient for nociceptive hypersensitivity in otherwise untreated animals (also known as "bystanders"). AIM: The current study addressed this possibility using an inflammation-based hyperalgesia model and long- and short-term exposure paradigms in C57BL/6J mice. MATERIALS & METHOD: Adult male and female mice received intraplantar injection of complete Freund's adjuvant (CFA) and were used as stimulus animals to otherwise naïve same-sex bystander mice (BS). Another group of untreated mice (OLF) was simultaneously exposed to the bedding of the stimulus mice. RESULTS: In the long-term, 15-day exposure paradigm, the presence of CFA mice or their bedding resulted in reduced von Frey threshold but not Hargreaves paw withdrawal latency in BS or OLF mice. In the short-term paradigm, 1-hr interaction with CFA conspecifics or 1-hr exposure to their bedding induced mechanical hypersensitivity in BS and OLF mice lasting for 3 hrs. Chemical ablation of the main olfactory epithelium prevented bedding-induced and stimulus mice-induced mechanical hypersensitivity. Gas chromatography-mass spectrometry (GC-MS) analysis of the volatile compounds in the bedding of experimental mice revealed that CFA-treated mice released an increased number of compounds indicative of disease states. DISCUSSION AND CONCLUSION: These results demonstrate that CFA-induced inflammatory pain can modulate nociception in bystander mice via an olfactory mechanism involving dynamic changes in volatile compounds detectable in the rodent bedding. SIGNIFICANCE: Social context can influence nociceptive sensitivity. Recent studies suggested involvement of olfaction in this influence. In agreement with this idea, the present study shows that the presence of mice with inflammatory pain produces nociceptive hypersensitivity in nearby conspecifics. This enhanced nociception occurs via olfactory cues present in the mouse bedding. Analysis of the bedding from mice with inflammatory pain identifies a number of compounds indicative of disease states. These findings demonstrate the importance of olfactory system in influencing pain states.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Humanos , Ratones , Masculino , Femenino , Animales , Hiperalgesia/inducido químicamente , Adyuvante de Freund/efectos adversos , Olfato , Ratones Endogámicos C57BL , Dolor , Inflamación/inducido químicamente
14.
Alcohol ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38185336

RESUMEN

Research confirms that stress is associated with alcohol drinking and relapse in males and females and that there are sex differences in the alcohol-related adaptations of stress pathways. The predator stress (PS) model of traumatic stress produces an increase in alcohol drinking or self-administration in a subpopulation of rodents, so it is utilized as an animal model of comorbid alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD). Previous work determined that sensitivity to PS-enhanced drinking produced sex differences in proteins related to stress-regulating systems in the medial prefrontal cortex and hippocampus. The present studies examined whether male and female C57BL/6J mice differ in sensitivity to the ability of the corticotropin releasing factor receptor 1 antagonist CP-376395 to decrease PS-enhanced drinking. In control studies, CP-376395 doses of 5, 10, and 20 mg/kg dose-dependently decreased 4-hour ethanol drinking. Next, CP-376395 doses of 5 and 10 mg/kg were tested for effects on ethanol drinking in mice with differential sensitivity to PS-enhanced drinking. Subgroups of "Sensitive" and "Resilient" male and female mice were identified based on changes in ethanol intake in an unrestricted access ethanol drinking procedure following four exposures to PS (dirty rat bedding). During the first 2 hours post-injection of CP-376395, both doses significantly decreased ethanol licks versus vehicle in the females, with no significant interaction between subgroups, whereas the 10 mg/kg dose significantly decreased ethanol licks versus vehicle in the "Resilient" males. Thus, sensitivity to the suppressive effect of CP-376395 on stress-induced ethanol intake was greater in females versus males, whereas sensitivity and resilience to PS-enhanced drinking produced differential sensitivity to the ability of CP-376395 to decrease ethanol drinking only in male mice. Our results argue against greater efficacy of CRF-R1's ability to decrease ethanol intake in subjects with traumatic stress-enhanced ethanol drinking.

15.
Front Behav Neurosci ; 18: 1380031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817806

RESUMEN

Background: Excessive alcohol consumption leads to serious health problems. Mechanisms regulating the consumption of alcohol are insufficiently understood. Previous preclinical studies suggested that non-social environmental and social environmental complexities can regulate alcohol consumption in opposite directions. However, previous studies did not include all conditions and/or did not include female rodents. Therefore, in this study, we examined the effects of social versus single housing in standard versus non-standard housing conditions in male and female mice. Methods: Adult C57BL/6 J mice were housed in either standard shoebox cages or in automated Herdsman 2 (HM2) cages and exposed to a two-bottle choice procedure with 3% or 6% ethanol versus water for 5 days. The HM2 cages use radiotracking devices to measure the fluid consumption of individual mice in an undisturbed and automated manner. In both housing conditions, mice were housed either at one or at four per cage. Results: In standard cages, group housing of animals decreased alcohol consumption and water consumption. In HM2 cages, group housing significantly increased ethanol preference and decreased water intake. There were no significant differences in these effects between male and female animals. These observations were similar for 3 and 6% ethanol solutions but were more pronounced for the latter. The effects of social environment on ethanol preference in HM2 cages were accompanied by an increase in the number of approaches to the ethanol solution and a decrease in the number of approaches to water. The differences in ethanol intake could not be explained by differences in locomotor or exploratory activity as socially housed mice showed fewer non-consummatory visits to the ethanol solutions than single-housed animals. In addition, we observed that significant changes in behaviors measuring the approach to the fluid were not always accompanied by significant changes in fluid consumption, and vice versa, suggesting that it is important to assess both measures of motivation to consume alcohol. Conclusion: Our results indicate that the direction of the effects of social environment on alcohol intake in mice depends on the non-social housing environment. Understanding mechanisms by which social and non-social housing conditions modulate alcohol intake could suggest approaches to counteract environmental factors enhancing hazardous alcohol consumption.

16.
Alcohol Clin Exp Res ; 37(7): 1161-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23398267

RESUMEN

BACKGROUND: Several recent studies implementing the standard "drinking-in-the-dark" (DID) model of short-term binge-like ethanol (EtOH) intake in C57BL/6J mice highlighted a role for the stress-related neuropeptide corticotropin-releasing factor (CRF) and its primary binding partner, the CRF type-1 (CRF1) receptor. METHODS: We evaluated the selectivity of CRF1 involvement in binge-like EtOH intake by interrupting CRF1 function via pharmacological and genetic methods in a slightly modified 2-bottle choice DID model that allowed calculation of an EtOH preference ratio. In addition to determining EtOH intake and preference, we also measured consumption of food and H2 O during the DID period, both in the presence and absence of EtOH and sweet tastant solutions. RESULTS: Treatment with either of the CRF1-selective antagonists CP-376,395 (CP; 10 to 20 mg/kg, i.p.) or NBI-27914 (10 to 30 mg/kg, i.p.) decreased intake of 15% EtOH in male C57BL/6J mice, but did so in the absence of a concomitant decrease in EtOH preference. These findings were replicated genetically in a CRF1 knockout (KO) mouse model (also on a C57BL/6J background). In contrast to effects on EtOH intake, pharmacological blockade of CRF1 with CP increased intake of 10% sucrose, consistent with previous findings in CRF1 KO mice. Finally, pharmacological and genetic disruption of CRF1 activity significantly reduced feeding and/or total caloric intake in all experiments, confirming the existence of nonspecific effects. CONCLUSIONS: Our findings indicate that blockade of CRF1 receptors does not exert specific effects on EtOH intake in the DID paradigm, and that slight modifications to this procedure, as well as additional consummatory control experiments, may be useful when evaluating the selectivity of pharmacological and genetic manipulations on binge-like EtOH intake.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Oscuridad , Modelos Animales de Enfermedad , Ingestión de Líquidos/fisiología , Ingestión de Alimentos/fisiología , Receptores de Hormona Liberadora de Corticotropina/fisiología , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/fisiopatología , Consumo de Bebidas Alcohólicas/psicología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Compuestos de Anilina/farmacología , Animales , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo Excesivo de Bebidas Alcohólicas/psicología , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pirimidinas/farmacología , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
17.
Neuropsychopharmacology ; 48(6): 920-928, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36369481

RESUMEN

Targeting the oxytocin (OXT) peptide system has emerged as a promising new approach for the treatment of alcohol use disorder (AUD). However, further advancements in this development depend on properly modeling various complex social aspects of AUD and its treatment. Here we examined behavioral and molecular underpinnings of OXT receptor (OXTR) agonism in prairie voles, a rodent species with demonstrated translational validity for neurobiological mechanisms regulating social affiliations. To further improve translational validity of these studies, we examined effects of intranasal (IN) OXT administration in male and female prairie voles socially housed in the presence of untreated cagemates. IN OXT selectively inhibited alcohol drinking in male, but not female, animals. Further, we confirmed that exogenously administered OXT penetrates the prairie vole brain and showed that Receptor for Advanced Glycation End-products assists this penetration after IN, but not intraperitoneal (IP), OXT administration. Finally, we demonstrated that IP administration of LIT-001, a small-molecule OXTR agonist, inhibits alcohol intake in male, but not female, prairie voles socially housed in the presence of untreated cagemates. Taken together, results of this study support the promise of selectively targeting OXTR for individualized treatment of AUD.


Asunto(s)
Alcoholismo , Oxitocina , Animales , Masculino , Oxitocina/farmacología , Pradera , Receptor para Productos Finales de Glicación Avanzada , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Receptores de Oxitocina , Arvicolinae , Conducta Social
18.
Neuroscience ; 535: 168-183, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944582

RESUMEN

Comorbidity of post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) worsens the prognosis for each of these individual disorders. The current study aimed to identify neurocircuits potentially involved in regulation of PTSD-AUD comorbidity by mapping expression of c-Fos in male and female C57BL/6J mice following repeated predator stress (PS), modeled by exposure to dirty rat bedding. In experiment 1, the levels of c-Fos in the paraventricular nucleus of the hypothalamus (PVH) and the nucleus accumbens shell were higher after the second PS vs the first PS, indicating a sensitized response to this stressor. Additional brain regions showed varied sex-dependent and independent regulation by the two consecutive PS exposures. In experiment 2, mice that increased voluntary alcohol consumption following four exposures to PS (Sensitive subgroup) showed higher c-Fos induction in the PVH, piriform cortex and ventromedial hypothalamus than mice that decreased consumption following these exposures (Resilient subgroup). In contrast to these brain regions, c-Fos was higher in the anterior olfactory nucleus of Resilient vs Sensitive mice. Taken together, these data demonstrate that repeated PS exposure and voluntary alcohol consumption increase neuronal activity across neurocircuits in which specific components depend on the vulnerability of individual mice to these stressors. Increased PVH activity observed across both experiments suggests this brain area as a potential mediator of PS-induced increases in alcohol consumption. Future investigations of specific neuronal populations within the PVH activated by PS, and manipulation of these specific neuronal populations, could improve our understanding of the mechanisms leading to PTSD-AUD comorbidity.


Asunto(s)
Consumo de Bebidas Alcohólicas , Encéfalo , Ratas , Ratones , Masculino , Femenino , Animales , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Fenotipo
19.
J Pharmacol Exp Ther ; 341(2): 455-63, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22333290

RESUMEN

Neuroadaptations underlying sensitization to drugs of abuse seem to influence compulsive drug pursuit and relapse associated with addiction. Our previous data support a role for the corticotropin-releasing factor (CRF) type-1 receptor (CRF1) in ethanol (EtOH)-induced psychomotor sensitization. CRF1 is endogenously activated by CRF and urocortin-1. Because genetic deletion of urocortin-1 did not affect EtOH sensitization, we hypothesized that CRF is the important ligand underlying EtOH sensitization. To test this hypothesis, we used heterozygous and homozygous knockout (KO) mice, which lack one or both copies of the gene coding for CRF, and their respective wild-type controls. EtOH sensitization was normal in heterozygous, but absent in homozygous, CRF KO mice. Corticosterone (CORT) levels were drastically reduced only in CRF KO mice. Because CRF/CRF1 initiate EtOH-induced activation of the hypothalamic-pituitary-adrenal axis, we investigated CORT effects on EtOH sensitization. The CORT synthesis inhibitor metyrapone prevented the acquisition, but not the expression, of EtOH sensitization. Exogenous CORT administration sensitized the locomotor response to a subsequent EtOH challenge; we observed, however, that the exogenous CORT levels necessary to induce sensitization to EtOH were significantly higher than those produced by EtOH treatment. Therefore, participation of CORT seems to be necessary, but not sufficient, to explain the role of CRF/CRF1 in the acquisition of sensitization to EtOH. Extra-hypothalamic CRF/CRF1 mechanisms are suggested to be involved in the expression of EtOH sensitization. The present results are consistent with current theories proposing a key role for CRF and CRF1 in drug-induced neuroplasticity, dependence, and addictive behavior.


Asunto(s)
Conducta Animal/efectos de los fármacos , Corticosterona/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Etanol/farmacología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Conducta Adictiva/genética , Conducta Adictiva/metabolismo , Hormona Liberadora de Corticotropina/sangre , Hormona Liberadora de Corticotropina/genética , Femenino , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Metirapona/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Trastornos Psicomotores/genética , Trastornos Psicomotores/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/genética , Urocortinas/genética , Urocortinas/metabolismo
20.
Neurobiol Learn Mem ; 97(1): 37-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21951632

RESUMEN

Although the medial prefrontal cortex (mPFC) has been shown to be integrally involved in extinction of a number of associative behaviors, its role in extinction of alcohol (ethanol)-induced associative learning has received little attention. Previous reports have provided evidence supporting a role for the mPFC in acquisition and extinction of amphetamine-induced conditioned place preference (CPP) in rats, however, it remains unknown if this region is necessary for extinction of ethanol (EtOH)-induced associative learning in mice. Using immunohistochemical analysis of phosphorylated and unphosphorylated cAMP response element-binding protein (CREB), the current set of experiments first showed that the prelimbic (PL) and infralimbic (IL) subregions of the mPFC exhibited dynamic responses in phosphorylation of CREB to a Pavlovian-conditioned, EtOH-paired cue. Interestingly, CREB phosphorylation within these regions was sensitive to manipulations of the EtOH-cue contingency-that is, the cue-induced increase of pCREB in both the PL and IL was absent following extinction. In order to confirm a functional role of the mPFC in regulating the extinction process, we then showed that electrolytic lesions of the mPFC following acquisition blocked subsequent extinction of EtOH-CPP. Together, these experiments indicate a role for the PL and IL subregions of the mPFC in processing changes of the EtOH-cue contingency, as well as in regulating extinction of EtOH-induced associative learning in mice.


Asunto(s)
Aprendizaje por Asociación/fisiología , Condicionamiento Clásico/fisiología , Etanol/administración & dosificación , Extinción Psicológica/fisiología , Corteza Prefrontal/fisiología , Animales , Aprendizaje por Asociación/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Condicionamiento Clásico/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Masculino , Ratones , Corteza Prefrontal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA