Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 177: 77-82, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29107736

RESUMEN

Mature osteoclasts express the vitamin D receptor (VDR) and are able to synthesise and respond to 1,25(OH)2D3 via CYP27B1 enzyme activity. Whether vitamin D signalling within osteoclasts is necessary for the regulation of osteoclastic bone resorption in an in vivo setting is unclear. To determine the requirement for the VDR- and CYP27B1-mediated activity in mature osteoclasts, conditional deletion mouse models were created whereby either Vdr or Cyp27b1 gene was inactivated by breeding either Vdrfl/fl or Cyp27b1fl/fl mice with Cathepsin K-Cre transgenic mice (CstkCre) to generate CtskCre/Vdr-/- and CtskCre/Cyp27b1-/- mice respectively. To account for potential CtskCre-meaited off-target deletion of Vdr, Dmp1Cre were also used determine the effect of Vdr deletion in osteocytes. Furthermore, CtskCre/Vdr-/- mice were ovariectomised (OVX) to assess the role of VDR in osteoclasts under bone-loss conditions and bone marrow precursor cells were cultured under osteoclastogenic conditions to assess osteoclast formation. Six-week-old CtskCre/Vdr-/- female mice demonstrated a 15% decrease in femoral BV/TV (p<0.05). In contrast, BV/TV remained unchanged in CtskCre/Cyp27b1-/- mice as well as in Dmp1Cre/VDR-/- mice. When CtskCre/Vdr-/- mice were subjected to OVX, the bone loss that occurred in CtskCre/Vdr-/- was predominantly due to a diminished volume of thinner trabeculae when compared to control levels. These changes in bone volume in CtskCre/Vdr-/- mice occurred without an observable histological change in osteoclast numbers or size. However, while cultured bone marrow-derived osteoclasts from CtskCre/Vdr-/- mice were marginally increased when compared to VDRfl/fl mice, elevated expression of genes such as Cathepsin K, Nfatc1 and VATPase was observed. Collectively, these data indicate that the absence of VDR in mature osteoclasts causes exacerbated bone loss in young mice and during OVX which is associated with enhanced osteoclastic activity and without increased osteoclastogenesis.


Asunto(s)
Resorción Ósea/fisiopatología , Osteoclastos/fisiología , Receptores de Calcitriol/fisiología , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/fisiología , Animales , Células de la Médula Ósea/fisiología , Células Cultivadas , Femenino , Fémur/diagnóstico por imagen , Fémur/fisiología , Ratones Noqueados , Ovariectomía
2.
J Steroid Biochem Mol Biol ; 164: 361-368, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26690785

RESUMEN

The role of the vitamin D receptor (VDR) in maintaining skeletal health appears to be complex and dependent on the physiological context. Global Vdr deletion in a mouse model (Vdr-/-) results in hypocalcemia, secondary hyperparathyroidism and bone features typical of vitamin D-dependent rickets type II. When weanling Vdr-/- mice are fed a diet containing high levels of calcium, phosphorus and lactose, termed the rescue diet, normalisation of serum calcium, phosphate and parathyroid hormone levels results in prevention of rickets at 10 weeks of age. However, 17 week old male Vdr-/- mice, fed the rescue diet, have been reported as osteopenic due to a decrease in bone formation when compared to wild type mice. We now report confirmation of this finding with further data on the effect of the rescue diet on appendicular and axial skeletal structures in male and female Vdr-/- mice at 26 weeks of age compared to Vdr+/- controls. All Vdr-/- mice were normocalcemic with no evidence of any mineralization defect. However, male Vdr-/- mice exhibited significantly reduced mineral in femoral and vertebral bones when compared to control littermate Vdr+/- mice, consistent with the previously reported data. In contrast, 26-week-old female Vdr-/- mice demonstrated significantly increased femoral trabecular bone volume although there was decreased vertebral trabecular bone volume, similar to males, and femoral cortical bone volume was unchanged. Thus, the Vdr-/- mouse model displays sex- and site-specific differences in skeletal structures with long-term feeding of a rescue diet. Although the global Vdr-/- ablation does not permit the determination of skeletal mechanisms producing these differences, these data confirm skeletal changes even when fed the rescue diet.


Asunto(s)
Dieta/métodos , Fémur/metabolismo , Fenotipo , Receptores de Calcitriol/genética , Raquitismo/dietoterapia , Raquitismo/metabolismo , Animales , Calcio/administración & dosificación , Femenino , Fémur/efectos de los fármacos , Fémur/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Lactosa/administración & dosificación , Masculino , Ratones , Ratones Noqueados , Hormona Paratiroidea/genética , Hormona Paratiroidea/metabolismo , Fosfatos/administración & dosificación , Receptores de Calcitriol/deficiencia , Raquitismo/genética , Raquitismo/patología , Factores Sexuales , Esqueleto/patología
3.
Clin Biochem Rev ; 36(2): 53-61, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26224895

RESUMEN

The vitamin D receptor (VDR), a nuclear transcription factor, elicits physiological regulation of gene transcription following binding of its ligand, 1,25-dihydroxyvitamin D. The major biological activities of vitamin D contribute to regulation of plasma calcium and phosphate homeostasis and bone remodeling, although recent evidence suggests that vitamin D, like other steroid hormone receptors, can regulate a diverse range of biological activities across many tissues. Such properties raise the notion that vitamin D deficiency may not only be detrimental to bone and muscular health, but also a risk factor for a number of adverse health outcomes including increased risk of cardiovascular disease, inflammation, immune system disorders and cancer. Advances in transcriptional research provide data not only on ligand-dependent activities of the VDR, but other activities of vitamin D extending to rapid modulation of intra-cellular signaling pathways as well as apparent ligand-independent interactions between the VDR and other transcriptionally active proteins. In this review, we detail the chief molecular activities of the VDR in regulating gene transcription, intracellular signaling and actions of VDR via binding to transcriptional regulating proteins. The breadth of biological activities attributed to vitamin D informs clinical biochemists and health care professionals on the implications of vitamin D deficiency for health.

4.
Clin Chim Acta ; 425: 148-52, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23911750

RESUMEN

Vitamin D activity requires an adequate vitamin D status as indicated by the serum level of 25-hydroxyvitamin D and appropriate expression of genes coding for vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase, the enzyme which converts 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. Vitamin D deficiency contributes to the aetiology of osteomalacia and osteoporosis. The key element of osteomalacia, or rickets in children, is a delay in mineralization. It can be resolved by normalisation of plasma calcium and phosphate homeostasis independently of vitamin D activity. The well characterised endocrine pathway of vitamin D metabolism generates plasma 1,25-dihydroxyvitamin D and these endocrine activities are solely responsible for vitamin D regulating plasma calcium and phosphate homeostasis and protection against osteomalacia. In contrast, a large body of clinical data indicate that an adequate serum 25-hydroxyvitamin D level improves bone mineral density protecting against osteoporosis and reducing fracture risk. Recent research demonstrates that the three major bone cell types have the capability to metabolise 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D to activate the vitamin D receptor and modulate gene expression. Dietary calcium intake interacts with vitamin D metabolism at both the renal and bone tissue levels to direct either a catabolic action on bone through the endocrine system when calcium intake is inadequate or an anabolic action through a bone autocrine or paracrine system when calcium intake is sufficient.


Asunto(s)
Huesos/metabolismo , Osteomalacia/metabolismo , Osteoporosis/metabolismo , Deficiencia de Vitamina D/metabolismo , Vitamina D/análogos & derivados , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Densidad Ósea , Huesos/patología , Calcificación Fisiológica , Calcio/metabolismo , Niño , Regulación de la Expresión Génica , Humanos , Osteomalacia/etiología , Osteomalacia/patología , Osteoporosis/etiología , Osteoporosis/patología , Fosfatos/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/patología
5.
Curr Drug Targets ; 14(14): 1683-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24010964

RESUMEN

The active form of vitamin D, 1,25-dihydroxyvitamin D3, carries out its diverse range of biological activities by binding to the nuclear vitamin D receptor, present in almost every cell of the body. It is well established that adequate serum 25-hydroxyvitamin D levels correlate with a reduction in the incidence of osteoporosis; however, the physiological basis for this relationship remains elusive. Although, the endocrine actions of vitamin D are thoroughly appreciated, the effect of vitamin D on bone tissue and bone cells is yet to be completely understood. There exists a wealth of literature that suggests the VDR within the three major bone cell types, osteoblasts, osteocytes and osteoclasts, is responsible for the regulation of bone homeostasis. The circumstances, under which the action of 1,25-dihydroxyvitamin D3 elicits an anabolic or catabolic role have not been elucidated. However, it would seem that vitamin D can evoke both of these effects and that this is partly mediated by calcium homeostasis. This raises the possibility that dietary calcium intake and vitamin D metabolism act concomitantly at the kidney, intestine and the bone in a coordinated response. Thus, to maintain adequate bone homeostasis and reduce the risk of metabolic bone disease via the diet, it is important to consider this duality of vitamin D action in relation to the overall calcium economy.


Asunto(s)
Huesos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Vitamina D/farmacología , Animales , Huesos/citología , Huesos/metabolismo , Homeostasis , Humanos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Vitamina D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA