Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Transl Med ; 22(1): 757, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135106

RESUMEN

BACKGROUND: Multi-drug resistance of poly(morpho)nuclear giant cells (PGCs) determines their cytoprotective and generative potential in cancer ecosystems. However, mechanisms underlying the involvement of PGCs in glioblastoma multiforme (GBM) adaptation to chemotherapeutic regimes remain largely obscure. In particular, metabolic reprogramming of PGCs has not yet been considered in terms of GBM recovery from doxorubicin (DOX)-induced stress. METHODS: Long-term proteomic and metabolic cell profiling was applied to trace the phenotypic dynamics of GBM populations subjected to pulse DOX treatment in vitro, with a particular focus on PGC formation and its metabolic background. The links between metabolic reprogramming, drug resistance and drug retention capacity of PGCs were assessed, along with their significance for GBM recovery from DOX-induced stress. RESULTS: Pulse DOX treatment triggered the transient formation of PGCs, followed by the appearance of small expanding cell (SEC) clusters. Development of PGCs was accompanied by the mobilization of their metabolic proteome, transient induction of oxidative phosphorylation (OXPHOS), and differential intracellular accumulation of NADH, NADPH, and ATP. The metabolic background of PGC formation was confirmed by the attenuation of GBM recovery from DOX-induced stress following the chemical inhibition of GSK-3ß, OXPHOS, and the pentose phosphate pathway. Concurrently, the mobilization of reactive oxygen species (ROS) scavenging systems and fine-tuning of NADPH-dependent ROS production systems in PGCs was observed. These processes were accompanied by perinuclear mobilization of ABCB1 and ABCG2 transporters and DOX retention in the perinuclear PGC compartments. CONCLUSIONS: These data demonstrate the cooperative pattern of GBM recovery from DOX-induced stress and the crucial role of metabolic reprogramming of PGCs in this process. Metabolic reprogramming enhances the efficiency of self-defense systems and increases the DOX retention capacity of PGCs, potentially reducing DOX bioavailability in the proximity of SECs. Consequently, the modulation of PGC metabolism is highlighted as a potential target for intervention in glioblastoma treatment.


Asunto(s)
Doxorrubicina , Glioblastoma , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Doxorrubicina/farmacología , Línea Celular Tumoral , Estrés Fisiológico/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Proteómica , Resistencia a Antineoplásicos/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Reprogramación Metabólica
2.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35054889

RESUMEN

Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Animales , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/diagnóstico , Glioblastoma/patología , Humanos , Masculino , Microscopía Fluorescente , Ratas
3.
Stem Cells ; 2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32985018

RESUMEN

Combinations of metabolic blockers (incl. fenofibrate) with chemotherapeutic drugs interfere with the drug-resistance of prostate cancer cells. However, their effect on cancer stem cells-dependent microevolution of prostate cancer malignancy remains unaddressed. Here, we hypothesize that the combined docetaxel/fenofibrate treatment prompts the selective expansion of cancer stem cells that affects the microevolution of their progenies. Accordingly, we adapted a combined in vitro/in vivo approach to identify biological and therapeutic consequences of this process. Minute subpopulations of docetaxel-resistant CD133high and/or CD44high cancer stem cell-like (SCL) cells were found in prostate cancer DU145 and PC3 cell populations. When pretreated with docetaxel, they readily differentiated into docetaxel-resistant CD44negative "bulk" cells, thus accounting for the microevolution of drug-resistant cell lineages. Combined docetaxel/fenofibrate treatment induced the generation of poly(morpho)nuclear giant cells and drug-resistant CD44high SCL cells. However, the CD44negative offspring of docetaxel- and docetaxel/fenofibrate-treated SCLs remained relatively sensitive to the combined treatment, while retaining enhanced resistance to docetaxel. Long-term propagation of drug-resistant SCL-derived lineages in the absence of docetaxel/fenofibrate resulted in their reverse microevolution toward the drug-sensitivity and invasive phenotype. Consequently, prostate tumors were able to recover from the combined docetaxel/fenofibrate stress after the initial arrest of their expansion in vivo. In conclusion, we have confirmed the potential of fenofibrate for the metronomic treatment of drug-resistant prostate tumors. However, docetaxel/fenofibrate-induced selective expansion of hyper-resistant CD44high SCL prostate cells and their "bulk" progenies prompts the microevolution of prostate tumor drug-resistance. This process can limit the implementation of metabolic chemotherapy in prostate cancer treatment.

4.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768934

RESUMEN

The receptor-interacting protein kinase 4 (RIPK4) plays an important role in the development and maintenance of various tissues including skin, but its role in melanoma has not been reported. Using patient-derived cell lines and clinical samples, we show that RIPK4 is expressed in melanomas at different levels. This heterogenous expression, together with very low level of RIPK4 in melanocytes, indicates that the role of this kinase in melanoma is context-dependent. While the analysis of microarray data has revealed no straightforward correlation between the stage of melanoma progression and RIPK4 expression in vivo, relatively high levels of RIPK4 are in metastatic melanoma cell lines. RIPK4 down-regulation by siRNA resulted in the attenuation of invasive potential as assessed by time-lapse video microscopy, wound-healing and transmigration assays. These effects were accompanied by reduced level of pro-invasive proteins such as MMP9, MMP2, and N-cadherin. Incubation of melanoma cells with phorbol ester (PMA) increased PKC-1ß level and hyperphosphorylation of RIPK4 resulting in degradation of RIPK4. Interestingly, incubation of cells with PMA for short and long durations revealed that cell migration is controlled by the NF-κB signaling in a RIPK4-dependent (RIPK4high) or independent (RIPK4low) manner depending on cell origin (distant or lymph node metastasis) or phenotype (mesenchymal or epithelial).


Asunto(s)
Proliferación Celular/genética , Melanocitos/metabolismo , Melanoma/patología , Proteína Quinasa C beta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Antígenos CD/análisis , Apoptosis/fisiología , Cadherinas/análisis , Movimiento Celular/fisiología , Células Cultivadas , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Quinasa I-kappa B/metabolismo , Metaloproteinasa 2 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/análisis , Melanoma/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Fosforilación , Proteína Quinasa C beta/análisis , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción ReIA/metabolismo , Trasplante Heterólogo
5.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923767

RESUMEN

Glioblastoma multiforme (GBM) recurrences after temozolomide (TMZ) treatment result from the expansion of drug-resistant and potentially invasive GBM cells. This process is facilitated by O6-Methylguanine-DNA Methyltransferase (MGMT), which counteracts alkylating TMZ activity. We traced the expansion of invasive cell lineages under persistent chemotherapeutic stress in MGMTlow (U87) and MGMThigh (T98G) GBM populations to look into the mechanisms of TMZ-induced microevolution of GBM invasiveness. TMZ treatment induced short-term, pro-invasive phenotypic shifts of U87 cells, in the absence of Snail-1 activation. They were illustrated by a transient induction of their motility and followed by the hypertrophy and the signs of senescence in scarce U87 sub-populations that survived long-term TMZ stress. In turn, MGMThigh T98G cells reacted to the long-term TMZ treatment with the permanent induction of invasiveness. Ectopic Snail-1 down-regulation attenuated this effect, whereas its up-regulation augmented T98G invasiveness. MGMTlow and MGMThigh cells both reacted to the long-term TMZ stress with the induction of Cx43 expression. However, only in MGMThigh T98G populations, Cx43 was directly involved in the induction of invasiveness, as manifested by the induction of T98G invasiveness after ectopic Cx43 up-regulation and by the opposite effect after Cx43 down-regulation. Collectively, Snail-1/Cx43-dependent signaling participates in the long-term TMZ-induced microevolution of the invasive GBM front. High MGMT activity remains a prerequisite for this process, even though MGMT-related GBM chemoresistance is not necessary for its initiation.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Movimiento Celular/efectos de los fármacos , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Glioblastoma/metabolismo , Temozolomida/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Conexina 43/metabolismo , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Humanos , Fenotipo , Ratas , Factores de Transcripción de la Familia Snail/metabolismo , Proteínas Supresoras de Tumor/genética
6.
J Cell Biochem ; 121(5-6): 3406-3425, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31919874

RESUMEN

Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) has a multidomain structure, which assures its pleiotropic activity. The physiological functions of this protein include repression of inflammatory processes and the prevention of immune disorders. The influence of MCPIP1 on the cell cycle of cancer cells has not been sufficiently elucidated. A previous study by our group reported that overexpression of MCPIP1 affects the cell viability, inhibits the activation of the phosphoinositide-3 kinase/mammalian target of rapamycin signalling pathway, and reduces the stability of the MYCN oncogene in neuroblastoma (NB) cells. Furthermore, a decrease in expression and phosphorylation levels of cyclin-dependent kinase (CDK) 1, which has a key role in the M phase of the cell cycle, was observed. On the basis of these previous results, the purpose of our present study was to elucidate the influence of MCPIP1 on the cell cycle of NB cells. It was confirmed that ectopic overexpression of MCPIP1 in two human NB cell lines, KELLY and BE(2)-C, inhibited cell proliferation. Furthermore, flow cytometric analyses and imaging of the cell cycle with a fluorescence ubiquitination cell-cycle indicator test, demonstrated that overexpression of MCPIP1 causes an accumulation of NB cells in the G1 phase of the cell cycle, while the possibility of an increase in G0 phase due to induction of quiescence or senescence was excluded. Additional assessment of the molecular machinery responsible for the transition between the cell-cycle phases confirmed that MCPIP1 overexpression reduced the expression of cyclins A2, B1, D1, D3, E1, and E2 and decreased the phosphorylation of CDK2 and CDK4, as well as retinoblastoma protein. In conclusion, the present results indicated a relevant impact of overexpression of MCPIP1 on the cell cycle, namely a block of the G1/S cell-cycle checkpoint, resulting in arrest of NB cells in the G1 phase.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proteína Quinasa CDC2/metabolismo , Regulación Neoplásica de la Expresión Génica , Neuroblastoma/metabolismo , Ribonucleasas/metabolismo , Factores de Transcripción/metabolismo , Ciclo Celular , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Perfilación de la Expresión Génica , Humanos , Análisis de los Mínimos Cuadrados , Análisis de Secuencia por Matrices de Oligonucleótidos , Oncogenes , Fosforilación , Programas Informáticos , Transfección , Ubiquitinación
7.
Int J Mol Sci ; 21(10)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443749

RESUMEN

Abnormal secretion of epidermal growth factor (EGF) by non-neuronal cells (e.g., glioma-associated microglia) establishes a feedback loop between glioblastoma multiforme (GBM) invasion and a functional disruption of brain tissue. Considering the postulated significance of this vicious circle for GBM progression, we scrutinized mechanisms of EGF-dependent pro-invasive signaling in terms of its interrelations with energy metabolism and reactive oxygen species (ROS) production. The effects of EGF on the invasiveness of human glioblastoma T98G cells were estimated using time-lapse video microscopy, immunocytochemistry, cell cycle assay, immunoblot analyses, and Transwell® assay. These techniques were followed by quantification of the effect of EGFR (Epidermal Growth Factor Receptor) and ROS inhibitors on the EGF-induced T98G invasiveness and intracellular ROS, ATP, and lactate levels and mitochondrial metabolism. The EGF remarkably augmented the proliferation and motility of the T98G cells. Responses of these cells were accompanied by cellular rear-front polarization, translocation of vinculin to the leading lamellae, and increased promptness of penetration of micropore barriers. Erlotinib (the EGFR inhibitor) significantly attenuated the EGF-induced T98G invasiveness and metabolic reprogramming of the T98G cells, otherwise illustrated by the increased mitochondrial activity, glycolysis, and ROS production in the EGF-treated cells. In turn, ROS inhibition by N-acetyl-L-cysteine (NAC) had no effect on T98G morphology, but considerably attenuated EGF-induced cell motility. Our data confirmed the EGFR/ROS-dependent pro-neoplastic and pro-invasive activity of EGF in human GBM. These EGF effects may depend on metabolic reprogramming of GBM cells and are executed by alternative ROS-dependent/-independent pathways. The EGF may thus preserve bioenergetic homeostasis of GBM cells in hypoxic regions of brain tissue.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transducción de Señal
8.
Arch Biochem Biophys ; 671: 130-142, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31276659

RESUMEN

Heme oxygenase-1 (HO-1, HMOX1) degrades pro-oxidant heme into carbon monoxide (CO), ferrous ions (Fe2+) and biliverdin. The enzyme exerts multiple cytoprotective functions associated with the promotion of angiogenesis and counteraction of the detrimental effects of cellular stress which are crucial for the survival of both normal and tumor cells. Accordingly, in many tumor types, high expression of HO-1 correlates with poor prognosis and resistance to treatment, i.e. chemotherapy, suggesting inhibition of HO-1 as a possible antitumor approach. At the same time, the lack of selective and well-profiled inhibitors of HO-1 determines the unmet need for new modulators of this enzyme, with the potential to be used in either adjuvant therapy or as the stand-alone targeted therapeutics. In the current study, we provided novel inhibitors of HO-1 and validated the effect of pharmacological inhibition of HO activity by the imidazole-based inhibitor (SLV-11199) in human pancreatic (PANC-1) and prostate (DU-145) cancer cell lines. We demonstrated potent inhibition of HO activity in vitro and showed associated anticancer effectiveness of SLV-11199. Treatment with the tested compound led to decreased cancer cell viability and clonogenic potential. It has also sensitized the cancer cells to chemotherapy. In PANC-1 cells, diminished HO activity resulted in down-regulation of pro-angiogenic factors like IL-8. Mechanistic investigations revealed that the treatment with SLV-11199 decreased cell migration and inhibited MMP-1 and MMP-9 expression. Moreover, it affected mesenchymal phenotype by regulating key modulators of the epithelial to mesenchymal transition (EMT) signalling axis. Finally, F-actin cytoskeleton and focal contacts were destabilized by the reported compound. Overall, the current study suggests a possible relevance of the tested novel inhibitor of HO activity as a potential anticancer compound. To support such utility, further investigation is still needed, especially in in vivo conditions.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemo-Oxigenasa 1/antagonistas & inhibidores , Imidazoles/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos
9.
Am J Respir Cell Mol Biol ; 57(1): 100-110, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28245135

RESUMEN

Pathologic accumulation of myofibroblasts in asthmatic bronchi is regulated by extrinsic stimuli and by the intrinsic susceptibility of bronchial fibroblasts to transforming growth factor-ß (TGF-ß). The specific function of gap junctions and connexins in this process has remained unknown. Here, we investigated the role of connexin43 (Cx43) in TGF-ß-induced myofibroblastic differentiation of fibroblasts derived from bronchoscopic biopsy specimens of patients with asthma and donors without asthma. Asthmatic fibroblasts expressed considerably higher levels of Cx43 and were more susceptible to TGF-ß1-induced myofibroblastic differentiation than were their nonasthmatic counterparts. TGF-ß1 efficiently up-regulated Cx43 levels and activated the canonical Smad pathway in asthmatic cells. Ectopic Cx43 expression in nonasthmatic (Cx43low) fibroblasts increased their predilection to TGF-ß1-induced Smad2 activation and fibroblast-myofibroblast transition. Transient Cx43 silencing in asthmatic (Cx43high) fibroblasts by Cx43 small interfering RNA attenuated the TGF-ß1-triggered Smad2 activation and myofibroblast formation. Direct interactions of Smad2 and Cx43 with ß-tubulin were demonstrated by co-immunoprecipitation assay, whereas the sensitivity of these interactions to TGF-ß1 signaling was confirmed by Förster Resonance Energy Transfer analyses. Furthermore, inhibition of the TGF-ß1/Smad pathway attenuated TGF-ß1-triggered Cx43 up-regulation and myofibroblast differentiation of asthmatic fibroblasts. Chemical inhibition of gap junctional intercellular communication with 18 α-glycyrrhetinic acid did not affect the initiation of fibroblast-myofibroblast transition in asthmatic fibroblasts but interfered with the maintenance of their myofibroblastic phenotype. Collectively, our data identified Cx43 as a new player in the feedback mechanism regulating TGF-ß1/Smad-dependent differentiation of bronchial fibroblasts. Thus, our observations point to Cx43 as a novel profibrotic factor in asthma progression.


Asunto(s)
Asma/metabolismo , Asma/patología , Bronquios/patología , Diferenciación Celular , Conexina 43/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Adulto , Diferenciación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Persona de Mediana Edad , Miofibroblastos/efectos de los fármacos , Fenotipo , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba/efectos de los fármacos
10.
Folia Biol (Krakow) ; 63(4): 249-55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26975139

RESUMEN

The local anesthetics procaine, lidocaine and tetracaine permit the reversible detachment of viable cells and their passaging or preservation in a non-adherent state in the absence of proteolytic enzymes. The effects of these anesthetics, dissolved in various media, on cell viability, cell detachment from substrata and preservation of cells in a non-adherent state, were compared using the AT-2 line of rat prostate carcinoma cells of moderate malignancy and the 3T3 mouse fibroblast cell line. It was found that all three local anesthetics can induce cell rounding followed by detachment of over 95% of viable cells in both lines in Ca2+/Mg(2+)-free PBS. Tetracaine in 1 mM concentration was the most effective in induction of fast cell detachment. However, procaine and lidocaine in 16 mM concentrations were found to be optimal for preservation of cells in a non-adherent state and for the maintenance of cell viability for at least 2 h. The tested anesthetics also cause cell rounding and detachment when present in various cell culture media but these processes occurred much more slowly and less efficiently than in Ca2+/Mg(2+)-free PBS. Normal 3T3 mouse fibroblasts after detachment and passaging undertake growth reaching the same saturation density in cultures after detachment with procaine or lidocaine as after passaging using trypsin solution. The results suggest that the application of local anesthetics can be a very simple and effective technique for cell passaging in tissue cultures. This technique might decrease side-effects and cell injury caused by trypsinization or cell scraping. The preservation of cells in suspension in a non-adherent state may facilitate analysis of cell surface properties and fractionation of cell mixtures. Avoiding the use of trypsin allows for the preservation of cell surface proteins ICAM, CXCR4, and HCAM analyzed with FlowSight image flow cytometry.


Asunto(s)
Anestésicos Locales/farmacología , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo/instrumentación , Proteínas de la Membrana/metabolismo , Células 3T3 , Animales , Línea Celular Tumoral , Masculino , Proteínas de la Membrana/genética , Ratones , Neoplasias de la Próstata , Ratas
11.
Carcinogenesis ; 35(9): 1920-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24503443

RESUMEN

Suppressive function of connexin(Cx)43 in carcinogenesis was recently contested by reports that showed a multifaceted function of Cx43 in cancer progression. These studies did not attempt to model the dynamics of intratumoral heterogeneity involved in the metastatic cascade. An unorthodox look at the phenotypic heterogeneity of prostate cancer cells in vitro enabled us to identify links between Cx43 functions and Snail-1-regulated functional speciation of invasive cells. Incomplete Snail-1-dependent phenotypic shifts accounted for the formation of phenotypically stable subclones of AT-2 cells. These subclones showed diverse predilection for invasive behavior. High Snail-1 and Cx43 levels accompanied high motility and nanomechanical elasticity of the fibroblastoid AT-2_Fi2 subclone, which determined its considerable invasiveness. Transforming growth factor-ß and ectopic Snail-1 overexpression induced invasiveness and Cx43 expression in epithelioid AT-2 subclones and DU-145 cells. Functional links between Snail-1 function and Cx43 expression were confirmed by Cx43 downregulation and phenotypic shifts in AT-2_Fi2, DU-145 and MAT-LyLu cells upon Snail-1 silencing. Corresponding morphological changes and Snail-1 downregulation were seen upon Cx43 silencing in AT-2_Fi2 cells. This indicates that feedback loops between both proteins regulate cell invasive behavior. We demonstrate that Cx43 may differentially predispose prostate cancer cells for invasion in a coupling-dependent and coupling-independent manner. When extrapolated to in vivo conditions, these data show the complexity of Cx43 functions during the metastatic cascade of prostate cancer. They may explain how Cx43 confers a selective advantage during cooperative invasion of clonally evolving, invasive prostate cancer cell subpopulations.


Asunto(s)
Conexina 43/fisiología , Factores de Transcripción/fisiología , Migración Transendotelial y Transepitelial , Línea Celular Tumoral , Forma de la Célula , Transición Epitelial-Mesenquimal , Retroalimentación Fisiológica , Uniones Comunicantes/metabolismo , Humanos , Masculino , Fenotipo , Neoplasias de la Próstata , Transducción de Señal , Factores de Transcripción de la Familia Snail
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121337, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35537264

RESUMEN

The core size of iron oxide nanoparticles (IONPs) is a crucial factor defining not only their magnetic properties but also toxicological profile and biocompatibility. On the other hand, particular IONPs may induce different biological response depending on the dose, exposure time, but mainly depending on the examined system. New light on this problem may be shed by the information concerning biomolecular anomalies appearing in various cell lines in response to the action of IONPs with different core diameters and this was accomplished in the present study. Using Raman microscopy we studied the abnormalities in the accumulation of proteins, lipids and organic matter within the nucleus, cytoplasm and cellular membrane of macrophages, HEK293T and U87MG cell line occurring as a result of 24-hour long exposure to PEG-coated magnetite IONPs. The examined nanoparticles had 5, 10 and 30 nm cores and were administered in doses 5 and 25 µg Fe/ml. The obtained results showed significant anomalies in biochemical composition of macrophages and the U87MG cells, but not the HEK293T cells, occurring as a result of exposure to all of the examined nanoparticles. However, IONPs with 10 nm core diminished the accumulation of biomolecules in cells only when they were administered at a larger dose. The Raman spectra recorded for the macrophages subjected to 30 nm IONPs and for the U87MG cells exposed to 5 and 10 nm showed the presence of additional bands in the wavenumber range 1700-2400 cm-1, probably resulting from the appearance of Fe adducts within cells. Our results indicate, moreover, that smaller IONPs may be effectively internalized into the U87MG cells, which points at their diagnostic/therapeutic potential in the case of glioblastoma multiforme.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Compuestos Férricos/toxicidad , Óxido Ferrosoférrico , Células HEK293 , Humanos , Macrófagos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Nanopartículas/química
13.
Sci Rep ; 11(1): 21808, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750434

RESUMEN

Although the key factor affecting the biocompatibility of IONPs is the core size, there is a lack of regular investigation concerning the impact of the parameter on the toxicity of these nanomaterials. Therefore, such studies were carried out in this paper. Their purpose was to compare the influence of PEG-coated-magnetite NPs with the core of 5, 10 and 30 nm on six carefully selected cell lines. The proliferation rate, viability, metabolic activity, migration activity, ROS levels and cytoskeleton architecture of cells have been evaluated for specified incubation periods. These were 24 and 72-h long incubations with IONPs administered in two doses: 5 and 25 µg Fe/ml. A decrease in viability was observed after exposure to the tested NPs for all the analyzed cell lines. This effect was not connected with core diameter but depended on the exposure time to the nanomaterials. IONPs increased not only the proliferation rate of macrophages-being phagocytic cells-but also, under certain conditions stimulated tumor cell divisions. Most likely, the increase in proliferation rate of macrophages contributed to the changes in the architecture of their cytoskeleton. The growth in the level of ROS in cells had been induced mainly by the smallest NPs. This effect was observed for HEK293T cells and two cancerous lines: U87MG (at both doses tested) and T98G (only for the higher dose). This requires further study concerning both potential toxicity of such IONPs to the kidneys and assessing their therapeutic potential in the treatment of glioblastoma multiforme.


Asunto(s)
Línea Celular/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Línea Celular/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Movimiento Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Células HEK293/efectos de los fármacos , Células HEK293/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , Nanopartículas Magnéticas de Óxido de Hierro/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo
14.
Acta Biochim Pol ; 68(4): 505-513, 2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34773931

RESUMEN

Stomach cancer is the 4th most common cancer diagnosed worldwide. Despite intensive research on its etiopathology, its treatment strategies have not changed in the last 50 years. Mushrooms have recently attracted much attention as the source of bioactive compounds that can potentially complement cancer therapies. Here, we extracted a phenolic fraction from Lactarius deterrimus and analyzed its composition and bioactivity against the gastric cancer (AGS) cells. The complexity of L. deterrimus compounds was revealed by an HPLC assay, and was accompanied by cytostatic, cytotoxic and anti-invasive effects of the L. deterrimus extract (LDE). These are illustrated by inhibition of the AGS cells' proliferation, metabolic activity and motility, and by induction of the cytoskeleton rearrangements. Apparently, these effects are exerted via activation of intracellular oxidative stress and decreased ATP production in AGS cells that could not be compensated by induction of autophagy. Less severe LDE effects were seen on physiology of normal gastric fibroblasts; however, inhibition of their motility indicates that LDE can interfere with gastric cancer development via an effect on stromal cells. Along with the observed synergy of LDE and cisplatin/5-fluorouracil effects on AGS cells, our data show the potential of LDE for supplementation of the gastric cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Basidiomycota/química , Fenoles/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Agaricales/química , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Fluorouracilo/farmacología , Humanos , Estrés Oxidativo/efectos de los fármacos , Fenoles/análisis , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
15.
Leukemia ; 35(10): 2964-2977, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34140648

RESUMEN

Cord blood (CB) represents a source of hematopoietic stem and progenitor cells (CB-HSPCs) for bone marrow (BM) reconstitution, but clinical CB application is limited in adult patients due to the insufficient number of CB-HSCPCs and the lack of effective ex vivo approaches to increase CB-HSPC functionality. Since human-induced pluripotent stem cells (hiPSCs) have been indicated as donor cells for bioactive extracellular vesicles (EVs) modulating properties of other cells, we are the first to employ hiPSC-derived EVs (hiPSC-EVs) to enhance the hematopoietic potential of CB-derived CD45dimLin-CD34+ cell fraction enriched in CB-HSPCs. We demonstrated that hiPSC-EVs improved functional properties of CB-HSPCs critical for their hematopoietic capacity including metabolic, hematopoietic and clonogenic potential as well as survival, chemotactic response to stromal cell-derived factor 1 and adhesion to the model components of hematopoietic niche in vitro. Moreover, hiPSC-EVs enhanced homing and engraftment of CB-HSPCs in vivo. This phenomenon might be related to activation of signaling pathways in CB-HSPCs following hiPSC-EV treatment, as shown on both gene expression and the protein kinases activity levels. In conclusion, hiPSC-EVs might be used as ex vivo modulators of CB-HSPCs capacity to enhance their functional properties and augment future practical applications of CB-derived cells in BM reconstitution.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Vesículas Extracelulares/trasplante , Sangre Fetal/citología , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Animales , Antígenos CD34/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
16.
Nanoscale ; 13(12): 6212-6226, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33885607

RESUMEN

The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX). Changes in cellular rigidity are typically attributed to remodelling of the actin filaments in the cytoskeleton. Here, we demonstrate that cell stiffening can be driven by crosstalk between actin filaments and microtubules in MTD-treated cells. Our findings improve the interpretation of biomechanical data obtained for living cells in studies of various physiological and pathological processes.


Asunto(s)
Preparaciones Farmacéuticas , Neoplasias de la Próstata , Citoesqueleto de Actina , Actinas , Citoesqueleto , Humanos , Masculino , Microtúbulos , Neoplasias de la Próstata/tratamiento farmacológico
17.
Sci Rep ; 10(1): 15447, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963318

RESUMEN

In the paper, the results of the first regular studies of ultra-small iron oxide nanoparticles (IONPs) toxicity in vitro were presented. The influence of PEG-coated NPs with 5 nm magnetite core on six different cell lines was examined. These were: human bronchial fibroblasts, human embryonic kidney cells (HEK293T), two glioblastoma multiforme (GBM) cell lines as well as GBM cells isolated from a brain tumor of patient. Additionally, mouse macrophages were included in the study. The influence of IONPs in three different doses (1, 5 and 25 µg Fe/ml) on the viability, proliferation and migration activity of cells was assessed. Moreover, quantifying the intracellular ROS production, we determined the level of oxidative stress in cells exposed to IONPs. In the paper, for the first time, the effect of Fe in the form of IONPs was compared with the analogical data obtained for iron salts solutions containing the same amount of Fe, on the similar oxidation state. Our results clearly showed that the influence of iron on the living cells strongly depends not only on the used cell line, dose and exposure time but also on the form in which this element was administered to the culture. Notably, nanoparticles can stimulate the proliferation of some cell lines, including glioblastoma multiforme. Compared to Fe salts, they have a stronger negative impact on the viability of the cells tested. Ultra-small NPs, also, more often positively affect cell motility which seem to differ them from the NPs with larger core diameters.


Asunto(s)
Movimiento Celular , Proliferación Celular , Compuestos de Hierro/farmacología , Nanopartículas de Magnetita/administración & dosificación , Ensayo de Materiales , Animales , Supervivencia Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Nanopartículas de Magnetita/química , Ratones , Oxidación-Reducción , Tamaño de la Partícula
18.
ACS Chem Neurosci ; 11(24): 4447-4459, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33205959

RESUMEN

Glioblastoma multiforme (GBM) is a primary brain tumor with a very high degree of malignancy and is classified by WHO as a glioma IV. At present, the treatment of patients suffering from GBM is based on surgical resection of the tumor with maximal protection of surrounding tissues followed by radio- and pharmacological therapy using temozolomide as the most frequently recommended drug. This strategy, however, does not guarantee success and has devastating consequences. Testing of new substances or therapies having potential in the treatment of GBM as well as detection of their side effects cannot be done on humans. Animal models of the disease are usually used for these purposes, and one possibility is the implantation of human tumor cells into rodent brains. Such a solution was used in the present study the purpose of which was comparison of elemental anomalies appearing in the brain as a result of implantation of different glioblastoma cell lines. These were two commercially available cell lines (U87MG and T98G), as well as tumor cells taken directly from a patient diagnosed with GBM. Using total reflection X-ray fluorescence we determined the contents of P, S, K, Ca, Fe, Cu, Zn, and Se in implanted-left and intact-right brain hemispheres. The number of elemental anomalies registered for both hemispheres was positively correlated with the invasiveness of GBM cells and was the highest for animals subjected to U87MG cell implantation, which presented significant decrease of P, K, and Cu levels and an increase of Se concentration within the left hemisphere. The abnormality common for all three groups of animals subjected to glioma cell implantation was increased Fe level in the brain, which may result from higher blood supply or the presence of hemorrhaging regions. In the case of the intact hemisphere, elevated Fe concentration may also indicate higher neuronal activity caused by taking over some functions of the left hemisphere impaired as a result of tumor growth.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Encéfalo , Línea Celular Tumoral , Humanos , Ratas , Espectrometría por Rayos X , Temozolomida
19.
Pharmaceutics ; 12(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217976

RESUMEN

(1) Background: Natural peptides supporting the innate immune system studied at the functional and mechanistic level are a rich source of innovative compounds for application in human therapy. Increasing evidence indicates that apart from antimicrobial activity, some of them exhibit selective cytotoxicity towards tumor cells. Their cationic, amphipathic structure enables interactions with the negatively-charged membranes of microbial or malignant cells. It can be modeled in 3D by application of dendrimer chemistry. (2) Methods: Here we presented design principles, synthesis and bioactivity of branched peptides constructed from ornithine (Orn) assembled as proline (Pro)- or histidine (His)-rich dendrons and dendrimers of the bola structure. The impact of the structure and amphipathic properties of dendrons/dendrimers on two glioblastoma cell lines U87 and T98G was studied with the application of proliferation, apoptosis and cell migration assays. Cell morphology/cytoskeleton architecture was visualized by immunofluorescence microscopy. (3) Results: Dimerization of dendrons into bola dendrimers enhanced their bioactivity. Pro- and His-functionalized bola dendrimers displayed cytostatic activity, even though differences in the responsiveness of U87 and T98G cells to these compounds indicate that their bioactivity depends not only on multiple positive charge and amphipathic structure but also on cellular phenotype. (4) Conclusion: Ornithine dendrons/dendrimers represent a group of promising anti-tumor agents and the potential tools to study interrelations between drug bioactivity, its chemical properties and tumor cells' phenotype.

20.
Toxicol In Vitro ; 62: 104676, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31629898

RESUMEN

Bisphenol A (BPA) is commonly present in plastics used for food storage and preservation. The release of BPA from these products results in a permanent human exposition to BPA; however, the quality and quantity of BPA adverse effects remain a matter of controversy. The common presence of BPA in the human environment and the controversies concerning the relations of human exposition to BPA and cancer incidence justify the research on the interactions between BPA and pro-metastatic signaling in cancer cells. Here, we describe a novel BPA-reactive signaling axis that induces the epithelial-mesenchymal transition (EMT) in lung adenocarcinoma A549 cells. BPA exerted negligible effects on their properties in a wide range of concentrations (10 nM - 100 nM), whereas it considerably induced A549 invasiveness at high concentrations (10 µM). The BPA-induced EMT was illustrated by morphologic changes, E/N-cadherin switch and vimentin/Snail-1/connexin(Cx)43 up-regulation in A549 populations. It was followed by enhancement of A549 drug-resistance. Corresponding effects of BPA were observed in prostate cancer cell populations. Concomitantly, we observed increased levels and perinuclear accumulation of estrogen-related receptor gamma (ERRγ) in BPA-treated cells, its interactions with Cx43/Snail-1, and the corresponding effects of phenol red on A549 cells. Collectively, these data identify a novel, pro-metastatic Snail-1/Cx43/ERRγ signaling pathway. Its reactivity to BPA underlies the induction of cancer cells' invasiveness in the presence of high BPA concentrations in vitro. Thus, the chronic exposition of cancer cells to extrinsic and intrinsic BPA should be considered as a potential obstacle in a cancer therapy.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Movimiento Celular/efectos de los fármacos , Conexina 43/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Estrógenos/toxicidad , Fenoles/toxicidad , Receptores de Estrógenos/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Fenolsulfonftaleína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA