Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(11): 6210-6220, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36853954

RESUMEN

Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.


Asunto(s)
Endocitosis , Proteínas de la Membrana , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Liposomas/química , Transporte Biológico
2.
Org Biomol Chem ; 16(48): 9305-9313, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30387482

RESUMEN

Alkaloids are a cornerstone in the development of medicinal and synthetic compounds due to their capability of specific recognition of targeted biomacromolecules, and uses in optical resolution and asymmetric reactions. To explore the untapped potential of the rigid and densely functionalized structures of alkaloids with precisely regulated configurations as optically active core scaffolds of self-assembling molecules, here we report the design, syntheses, chiroptical properties and self-assemblies of C2-symmetric alkaloidal amphiphiles with anti/syn stereochemical variations. Bispyrrolidinoindoline (BPI) was chosen as the optically active core scaffold. It was synthetically modified with hydrophobic alkyl chains and hydrophilic tetraethylene glycol tails to provide amphiphilicity. The anti/syn configurational differences in the amphiphiles significantly influenced the chiroptical, dynamic and supramolecular properties. Amphiphiles with anti-configurations responded to a solvent polarity change by altering their conformations, while the conformational changes of the syn-type amphiphiles were largely restricted. Furthermore, the anti-type amphiphile having the highest structural flexibility showed a characteristic split Cotton effect in an organic medium and formed the largest aggregates upon addition of water with a significant change in the circular dichroism (CD) profile, while amphiphiles having conformational restriction by the syn-configuration or a macrocyclic structure showed monomodal CD signals and afforded significantly smaller aggregates upon addition of water. Hence, the C2-symmetric alkaloidal BPI structure is demonstrated to be a useful core scaffold for supramolecular chemistry to design amphiphiles with controllable configurational diversity, which allows for the customization of chiroptical properties, conformational flexibility and self-assembly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA