Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 142(10): 865-877, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37300386

RESUMEN

Hematological toxicity is the most common adverse event after chimeric antigen receptor (CAR) T-cell therapy. Cytopenias can be profound and long-lasting and can predispose for severe infectious complications. In a recent worldwide survey, we demonstrated that there remains considerable heterogeneity in regard to current practice patterns. Here, we sought to build consensus on the grading and management of immune effector cell-associated hematotoxicity (ICAHT) after CAR T-cell therapy. For this purpose, a joint effort between the European Society for Blood and Marrow Transplantation (EBMT) and the European Hematology Association (EHA) involved an international panel of 36 CAR T-cell experts who met in a series of virtual conferences, culminating in a 2-day meeting in Lille, France. On the basis of these deliberations, best practice recommendations were developed. For the grading of ICAHT, a classification system based on depth and duration of neutropenia was developed for early (day 0-30) and late (after day +30) cytopenia. Detailed recommendations on risk factors, available preinfusion scoring systems (eg, CAR-HEMATOTOX score), and diagnostic workup are provided. A further section focuses on identifying hemophagocytosis in the context of severe hematotoxicity. Finally, we review current evidence and provide consensus recommendations for the management of ICAHT, including growth factor support, anti-infectious prophylaxis, transfusions, autologous hematopoietic stem cell boost, and allogeneic hematopoietic cell transplantation. In conclusion, we propose ICAHT as a novel toxicity category after immune effector cell therapy, provide a framework for its grading, review literature on risk factors, and outline expert recommendations for the diagnostic workup and short- and long-term management.


Asunto(s)
Hematología , Trasplante de Células Madre Hematopoyéticas , Consenso , Inmunoterapia Adoptiva , Factores Inmunológicos
2.
Cytotherapy ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727653

RESUMEN

BACKGROUND AIMS: Cytopenias after allogeneic stem cell transplantation (allo-SCT) are a common complication, the underlying pathogenic mechanisms of which remain incompletely understood. Multipotent mesenchymal stromal/stem cell (MSC) therapy has been successfully employed in the treatment of immune-related disorders and can aid in the restoration of the hematopoietic niche. METHODS: A phase II clinical trial to assess the efficacy and safety of administering four sequential doses of ex-vivo expanded bone marrow MSCs from a third-party donor to patients with persistent severe cytopenias after allo-SCT was performed. RESULTS: The overall response rate on day 90 was 75% among the 27 evaluable patients (comprising 12 complete responses, 8 partial responses, and 7 with no response). The median time to respond was 14.5 days. Responses were observed across different profiles, including single or multiple affected lineages, primary or secondary timing, and potential immune-mediated or post-infectious pathophysiology versus idiopathic origin. With a median follow-up for surviving patients of 85 months after MSC infusion, 53% of patients are alive. Notably, no adverse events related to MSC therapy were reported. CONCLUSIONS: In summary, the sequential infusion of third-party MSCs emerges as a viable and safe therapeutic option, exhibiting potential benefits for patients experiencing cytopenias following allo-SCT.

3.
Cytotherapy ; 26(7): 681-685, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38416085

RESUMEN

Cell and gene therapy poses evolving challenges. The current article summarizes the discussions held by European Regional Committee of the International Society for Cell & Gene Therapy and the European Society for Blood and Marrow Transplantation (EBMT) on the current challenges in this field, focusing on the European setting. This article emphasizes the imperative assessment of real-world cell and gene therapy activity, advocating for expanded registries beyond hematopoietic transplantation and chimeric antigen receptor-T-cell therapy. Accreditation's role in ensuring standardized procedures, as exemplified by JACIE (The Joint Accreditation Committee of ISCT-Europe and EBMT), is crucial for safety. Access to commercial products and reimbursement variations among countries underscore the need for uniform access to advanced therapy medical products (ATMPs). Academic product development and point-of-care manufacturing face barriers to patient access. Hospital Exemption's potential, demonstrated by some initial experiences, may increase patient accessibility in individual situations. Regulatory challenges, including the ongoing European ATMPs legislation review, necessitate standardized criteria for Hospital Exemption and mandatory reporting within registries. Efforts to combat unproven therapies and fraud involve collaboration between scientific societies, regulatory bodies and patient groups. Finally, is important to highlight the vital role of education and workforce development in meeting the escalating demand for specialized professionals in the ATMP field. Collaboration among scientific societies, academic institutions, industry, regulatory bodies and patient groups is crucial for overcoming all these challenges to increase gene and cell therapy activity in Europe.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Genética , Humanos , Terapia Genética/métodos , Europa (Continente) , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Sistema de Registros , Sociedades Médicas , Acreditación/métodos
4.
Cytotherapy ; 25(10): 1033-1036, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37498257

RESUMEN

The development and production of cell gene and tissue (CGT)-based therapies requires a specialized workforce. Entering the CGT arena is complex because it involves different scientific and biomedical aspects (e.g., immunology, stem cell biology and transplantation), as well as knowledge of regulatory affairs and compliance with pharmaceutical quality standards. Currently, both industry and academia are facing a worldwide workforce shortage, whereas only a handful of educational and training initiatives specifically address the peculiarities of CGT product development, the procurement of substances of human origin, the manufacturing process itself and clinical monitoring and biovigilance. The training offered by traditional Master's and PhD programs is not suited for training a skilled workforce ready to enter the increasingly fast-growing CGT field. Indeed, typically these programs are of long duration and only partially cover the required competencies, whereas the demand for a specialized workforce relentlessly increases. In this paper, we (i) present and discuss our understanding of the roots of current growth acceleration of the CGT field; (ii) anticipate future workforce needs due to the expected increase of marketed CGT-based therapies and (iii) evaluate potential solutions that seek to adapt, develop and implement current educational and training initiatives. Importantly for these solutions, we call for scientific societies, such as the International Society for Cell & Gene Therapy, to play a more active role and act as catalysers for new initiatives, building bridges between academia and Industry to establish effective educational and training programs that will engage and prepare a new generation of qualified professionals for entry into the CGT field.


Asunto(s)
Recursos Humanos , Humanos , Europa (Continente)
5.
Stem Cells ; 39(1): 26-32, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32985054

RESUMEN

The therapeutic effects of mesenchymal stromal cells (MSCs) in graft failure or poor graft function after allogenic hematopoietic stem cell transplantation (HSCT) are currently undergoing clinical evaluation. MSCs exert their functions, at least partially, through the secretion of extracellular vesicles (MSC-EVs). The available information on the biological potential of MSC-EVs to improve hematopoietic function, both in in vitro studies and in reported preclinical models, focusing on the possible mechanisms of these effects are summarized in the current review. The potential advantages of EVs over MSCs are also discussed, as well as the limitations and uncertainties in terms of isolation, characterization, mechanism of action in this setting, and industrial scalability that should be addressed for their potential clinical application.


Asunto(s)
Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas/metabolismo , Aloinjertos , Animales , Vesículas Extracelulares/metabolismo , Humanos
6.
Br J Clin Pharmacol ; 88(4): 1913-1924, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34705297

RESUMEN

AIMS: Imatinib is considered the standard first-line treatment in newly diagnosed patients with chronic-phase myeloid leukaemia (CML). Several imatinib population pharmacokinetic (popPK) models have been developed. However, their predictive performance has not been well established when extrapolated to different populations. Therefore, this study aimed to perform an external evaluation of available imatinib popPK models developed mainly in adult patients, and to evaluate the improvement in individual model-based predictions through Bayesian forecasting computed by each model at different treatment occasions. METHODS: A literature review was conducted through PubMed and Scopus to identify popPK models. Therapeutic drug monitoring data collected in adult CML patients treated with imatinib was used for external evaluation, including prediction- and simulated-based diagnostics together with Bayesian forecasting analysis. RESULTS: Fourteen imatinib popPK studies were included for model-performance evaluation. A total of 99 imatinib samples were collected from 48 adult CML patients undergoing imatinib treatment with a minimum of one plasma concentration measured at steady-state between January 2016 and December 2020. The model proposed by Petain et al showed the best performance concerning prediction-based diagnostics in the studied population. Bayesian forecasting demonstrated a significant improvement in predictive performance at the second visit. Inter-occasion variability contributed to reducing bias and improving individual model-based predictions. CONCLUSIONS: Imatinib popPK studies developed in Caucasian subjects including α1-acid glycoprotein showed the best model performance in terms of overall bias and precision. Moreover, two imatinib samples from different visits appear sufficient to reach an adequate model-based individual prediction performance trough Bayesian forecasting.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Adulto , Antineoplásicos/farmacocinética , Teorema de Bayes , Monitoreo de Drogas , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Modelos Biológicos
7.
J Transl Med ; 19(1): 506, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895259

RESUMEN

Knee osteoarthritis is the most prevalent joint disease and a frequent cause of pain, functional loss and disability. Conventional treatments have demonstrated only modest clinical benefits whereas cell-based therapies have shown encouraging results, but important details, such as dose needed, long-term evolution or number of applications required are scarcely known. Here we have reanalyzed results from two recent pilot trials with autologous bone marrow-derived mesenchymal stromal cells using the Huskisson plot to enhance quantification of efficacy and comparability. We find that cell doses of 10, 40 and 100 million autologous cells per knee provided quite similar healing results and that much of the effect attained 1 year after cell application remained after 2 and 4 years. These results are encouraging because they indicate that, apart from safety and simplicity: (i) the beneficial effect is both significant and sizeable, (ii) it can be achieved with a single injection of cells, and (iii) the effect is perdurable for years.Trial registration: EudraCT 2009-017405-11; NCT02123368. Registered 25 April 2014-Prospectively registered, https://clinicaltrials.gov/ct2/show/NCT02123368?term=02123368&draw=2&rank=1.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Médula Ósea , Células de la Médula Ósea , Humanos , Inyecciones Intraarticulares , Trasplante de Células Madre Mesenquimatosas/métodos , Osteoartritis de la Rodilla/terapia , Trasplante Autólogo , Resultado del Tratamiento
8.
Biol Blood Marrow Transplant ; 26(12): 2237-2244, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32717433

RESUMEN

Accurate prognostic tools are crucial to assess the risk/benefit ratio of allogeneic hematopoietic cell transplantation (allo-HCT) in patients with myelofibrosis (MF). We aimed to evaluate the performance of the Myelofibrosis Transplant Scoring System (MTSS) and identify risk factors for survival in a multicenter series of 197 patients with MF undergoing allo-HCT. After a median follow-up of 3.1 years, 47% of patients had died, and the estimated 5-year survival rate was 51%. Projected 5-year risk of nonrelapse mortality and relapse incidence was 30% and 20%, respectively. Factors independently associated with increased mortality were a hematopoietic cell transplantation-specific comorbidity index (HCT-CI) ≥3 and receiving a graft from an HLA-mismatched unrelated donor or cord blood, whereas post-transplant cyclophosphamide (PT-Cy) was associated with improved survival. Donor type was the only parameter included in the MTSS model with independent prognostic value for survival. According to the MTSS, 3-year survival was 62%, 66%, 37%, and 17% for low-, intermediate-, high-, and very high-risk groups, respectively. By pooling together the low- and intermediate-risk groups, as well as the high- and very high-risk groups, we pinpointed 2 categories: standard risk and high risk (25% of the series). Three-year survival was 62% in standard-risk and 25% in high-risk categories (P < .001). We derived a risk score based on the 3 independent risk factors for survival in our series (donor type, HCT-CI, and PT-Cy). The corresponding 5-year survival for the low-, intermediate-, and high-risk categories was 79%, 55%, and 32%, respectively (P < .001). In conclusion, the MTSS model failed to clearly delineate 4 prognostic groups in our series but may still be useful to identify a subset of patients with poor outcome. We provide a simple prognostic scoring system for risk/benefit considerations before transplantation in patients with MF.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mielofibrosis Primaria , Humanos , Mielofibrosis Primaria/terapia , Pronóstico , Acondicionamiento Pretrasplante , Trasplante Homólogo , Resultado del Tratamiento
9.
J Transl Med ; 18(1): 356, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948200

RESUMEN

BACKGROUND: Mesenchymal stromal cells are a safe and promising option to treat knee osteoarthritis as previously demonstrated in different clinical trials. However, their efficacy, optimal dose and addition of adjuvants must be determined. Here, we evaluated the clinical effects of a dose of 100 × 106 bone marrow mesenchymal stromal cells (BM-MSCs) in combination with Platelet Rich Plasma (PRGF®) as adjuvant in a randomized clinical trial. METHODS: A phase II, multicenter, randomized clinical trial with active control was conducted. Sixty patients diagnosed with knee OA were randomly assigned to 3 weekly doses of PRGF® or intraarticular administration of 100 × 106 cultured autologous BM-MSCs plus PRGF®. Patients were followed up for 12 months, and pain and function were assessed using VAS and WOMAC and by measuring the knee range of motion range. X-ray and magnetic resonance imaging analyses were performed to analyze joint damage. RESULTS: No adverse effects were reported after BM-MSC administration or during follow-up. According to VAS, the mean value (SD) for PRGF® and BM-MSC with PRGF® went from 5 (1.8) to 4.5 (2.2) (p = 0.389) and from 5.3 (1.9) to 3.5 (2.5) (p = 0.01), respectively at 12 months. In WOMAC, the mean (SD) baseline and 12-month overall WOMAC scores in patients treated with PRGF® was 31.9 (16.2) and 22.3 (15.8) respectively (p = 0.002) while that for patients treated with BM-MSC plus PRGF® was 33.4 (18.7) and 23.0 (16.6) (p = 0.053). Although statistical significances between groups have been not detected, only patients being treated with BM-MSC plus PRGF® could be considered as a OA treatment responders following OARSI criteria. X-ray and MRI (WORMS protocol) revealed no changes in knee joint space width or joint damage. CONCLUSIONS: Treatment with BM-MSC associated with PRGF® was shown to be a viable therapeutic option for osteoarthritis of the knee, with clinical improvement at the end of follow-up. Further phase III clinical trials would be necessary to confirm the efficacy. Trial registration Clinical Trials.gov identifier NCT02365142. Nº EudraCT: 2011-006036-23.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Plasma Rico en Plaquetas , Humanos , Inyecciones Intraarticulares , Osteoartritis de la Rodilla/terapia , Resultado del Tratamiento
10.
Stem Cells ; 37(10): 1357-1368, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31184411

RESUMEN

Mesenchymal stromal cells (MSC) may exert their functions by the release of extracellular vesicles (EV). Our aim was to analyze changes induced in CD34+ cells after the incorporation of MSC-EV. MSC-EV were characterized by flow cytometry (FC), Western blot, electron microscopy, and nanoparticle tracking analysis. EV incorporation into CD34+ cells was confirmed by FC and confocal microscopy, and then reverse transcription polymerase chain reaction and arrays were performed in modified CD34+ cells. Apoptosis and cell cycle were also evaluated by FC, phosphorylation of signal activator of transcription 5 (STAT5) by WES Simple, and clonal growth by clonogenic assays. Human engraftment was analyzed 4 weeks after CD34+ cell transplantation in nonobese diabetic/severe combined immunodeficient mice. Our results showed that MSC-EV incorporation induced a downregulation of proapoptotic genes, an overexpression of genes involved in colony formation, and an activation of the Janus kinase (JAK)-STAT pathway in CD34+ cells. A significant decrease in apoptosis and an increased CD44 expression were confirmed by FC, and increased levels of phospho-STAT5 were confirmed by WES Simple in CD34+ cells with MSC-EV. In addition, these cells displayed a higher colony-forming unit granulocyte/macrophage clonogenic potential. Finally, the in vivo bone marrow lodging ability of human CD34+ cells with MSC-EV was significantly increased in the injected femurs. In summary, the incorporation of MSC-EV induces genomic and functional changes in CD34+ cells, increasing their clonogenic capacity and their bone marrow lodging ability. Stem Cells 2019;37:1357-1368.


Asunto(s)
Antígenos CD34/metabolismo , Células de la Médula Ósea/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Humanos , Ratones
11.
Haematologica ; 105(2): 297-316, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31753925

RESUMEN

Chimeric antigen receptor (CAR) T cells are a novel class of anti-cancer therapy in which autologous or allogeneic T cells are engineered to express a CAR targeting a membrane antigen. In Europe, tisagenlecleucel (Kymriah™) is approved for the treatment of refractory/relapsed acute lymphoblastic leukemia in children and young adults as well as relapsed/refractory diffuse large B-cell lymphoma, while axicabtagene ciloleucel (Yescarta™) is approved for the treatment of relapsed/refractory high-grade B-cell lymphoma and primary mediastinal B-cell lymphoma. Both agents are genetically engineered autologous T cells targeting CD19. These practical recommendations, prepared under the auspices of the European Society of Blood and Marrow Transplantation, relate to patient care and supply chain management under the following headings: patient eligibility, screening laboratory tests and imaging and work-up prior to leukapheresis, how to perform leukapheresis, bridging therapy, lymphodepleting conditioning, product receipt and thawing, infusion of CAR T cells, short-term complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, antibiotic prophylaxis, medium-term complications including cytopenias and B-cell aplasia, nursing and psychological support for patients, long-term follow-up, post-authorization safety surveillance, and regulatory issues. These recommendations are not prescriptive and are intended as guidance in the use of this novel therapeutic class.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Antígenos CD19 , Médula Ósea , Tratamiento Basado en Trasplante de Células y Tejidos , Niño , Europa (Continente) , Humanos , Receptores de Antígenos de Linfocitos T/genética , Adulto Joven
12.
Cytotherapy ; 22(1): 1-5, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31866320

RESUMEN

In the current article we summarize the 15-year experience of the Spanish Cell Therapy Network (TerCel), a successful collaborative public initiative funded by the Spanish government for the support of nationwide translational research in this important area. Thirty-two research groups organized in three programs devoted to cardiovascular, neurodegenerative and immune-inflammatory diseases, respectively, currently form the network. Each program has three working packages focused on basic science, pre-clinical studies and clinical application. TerCel has contributed during this period to boost the translational research in cell therapy in Spain, setting up a network of Good Manufacturing Practice-certified cell manufacturing facilities- and increasing the number of translational research projects, publications, patents and clinical trials of the participating groups, especially those in collaboration. TerCel pays particular attention to the public-private collaboration, which, for instance, has led to the development of the first allogeneic cell therapy product approved by the European Medicines Agency, Darvadstrocel. The current collaborative work is focused on the development of multicenter phase 2 and 3 trials that could translate these therapies to clinical practice for the benefit of patients.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Medicina Regenerativa/métodos , Investigación Biomédica Traslacional/métodos , Investigación Biomédica , Enfermedades Cardiovasculares/terapia , Humanos , Enfermedades del Sistema Inmune/terapia , Colaboración Intersectorial , Enfermedades Neurodegenerativas/terapia , España
13.
Br J Haematol ; 187(1): 93-104, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31172513

RESUMEN

Patients with low-risk myelodysplastic syndromes (MDS) usually develop iron overload. This leads to a high level of oxidative stress in the bone marrow (BM) and increases haematopoietic cell dysfunction. Our objective was to analyse whether chelation with deferasirox (DFX) alleviates the consequences of oxidative stress and improves BM cell functionality. We analysed 13 iron-overloaded MDS patients' samples before and 4-10 months after treatment with DFX. Using multiparametric flow cytometry analysis, we measured intracellular reactive oxygen species (ROS), DNA oxidation and double strand breaks. Haematopoietic differentiation capacity was analysed by colony-forming unit (CFU) assays. Compared to healthy donors, MDS showed a higher level of intracellular ROS and DNA oxidative damage in BM cells. DNA oxidative damage decreased following DFX treatment. Furthermore, the clonogenic assays carried out before treatment suggest an impaired haematopoietic differentiation. DFX seems to improve this capacity, as illustrated by a decreased cluster/CFU ratio, which reached values similar to controls. We conclude that BM cells from MDS are subject to higher oxidative stress conditions and show an impaired haematopoietic differentiation. These adverse features seem to be partially rectified after DFX treatment.


Asunto(s)
Daño del ADN/efectos de los fármacos , Deferasirox/uso terapéutico , Quelantes del Hierro/uso terapéutico , Síndromes Mielodisplásicos/tratamiento farmacológico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Estudios de Casos y Controles , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Deferasirox/farmacología , Humanos , Quelantes del Hierro/farmacología , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Persona de Mediana Edad , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Estudios Prospectivos , Especies Reactivas de Oxígeno/metabolismo , Células Madre/efectos de los fármacos , Células Madre/fisiología , Adulto Joven
14.
Biol Blood Marrow Transplant ; 24(3): 443-451, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29155314

RESUMEN

Bone marrow mesenchymal stromal cells (MSCs) are precursors of adipocytes and osteoblasts and key regulators of hematopoiesis. Irradiation is widely used in conditioning regimens. Although MSCs are radio-resistant, the effects of low-dose irradiation on their behavior have not been extensively explored. Our aim was to evaluate the effect of 2.5 Gy on MSCs. Cells from 25 healthy donors were either irradiated or not (the latter were used as controls). Cells were characterized following International Society for Cellular Therapy criteria, including in vitro differentiation assays. Apoptosis was evaluated by annexin V/7-amino-actinomycin staining. Gene expression profiling and reverse transcriptase (RT)-PCR of relevant genes was also performed. Finally, long-term bone marrow cultures were performed to test the hematopoietic-supporting ability. Our results showed that immunophenotypic characterization and viability of irradiated cells was comparable with that of control cells. Gene expression profiling showed 50 genes differentially expressed. By RT-PCR, SDF-1 and ANGPT were overexpressed, whereas COL1A1 was downregulated in irradiated cells (P = .015, P = .007, and P = .031, respectively). Interestingly, differentiation of irradiated cells was skewed toward osteogenesis, whereas adipogenesis was impaired. Higher expression of genes involved in osteogenesis as SPP1 (P = .039) and lower of genes involved in adipogenesis, CEBPA and PPARG (P = .003 and P = .019), together with an increase in the mineralization capacity (Alizarin Red) was observed in irradiated cells. After differentiation, adipocyte counts were decreased in irradiated cells at days 7, 14, and 21 (P = .018 P = .046, and P = .018, respectively). Also, colony-forming unit granulocyte macrophage number in long-term bone marrow cultures was significantly higher in irradiated cells after 4 and 5 weeks (P = .046 and P = .007). In summary, the irradiation of MSCs with 2.5 Gy improves their hematopoietic-supporting ability by increasing osteogenic differentiation and decreasing adipogenesis.


Asunto(s)
Adipogénesis/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Rayos gamma , Hematopoyesis/efectos de la radiación , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de la radiación , Adulto , Anciano , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Persona de Mediana Edad
15.
Biol Blood Marrow Transplant ; 24(11): 2365-2370, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30031938

RESUMEN

The immunosuppressive properties of mesenchymal stromal cells (MSC) have been successfully tested to control clinical severe graft-versus host disease and improve survival. However, clinical studies have not yet provided conclusive evidence of their efficacy largely because of lack of patients' stratification criteria. The heterogeneity of MSC preparations is also a major contributing factor, as manufacturing of therapeutic MSC is performed according to different protocols among different centers. Understanding the variability of the manufacturing protocol would allow a better comparison of the results obtained in the clinical setting among different centers. In order to acquire information on MSC manufacturing we sent a questionnaire to the European Society for Blood and Marrow Transplantation centers registered as producing MSC. Data from 17 centers were obtained and analyzed by means of a 2-phase questionnaire specifically focused on product manufacturing. Gathered information included MSC tissue sources, MSC donor matching, medium additives for ex vivo expansion, and data on MSC product specification for clinical release. The majority of centers manufactured MSC from bone marrow (88%), whilst only 2 centers produced MSC from umbilical cord blood or cord tissue. One of the major changes in the manufacturing process has been the replacement of fetal bovine serum with human platelet lysate as medium supplement. 59% of centers used only third-party MSC, whilst only 1 center manufactured exclusively autologous MSC. The large majority of these facilities (71%) administered MSC exclusively from frozen batches. Aside from variations in the culture method, we found large heterogeneity also regarding product specification, particularly in the markers used for phenotypical characterization and their threshold of expression, use of potency assays to test MSC functionality, and karyotyping. The initial data collected from this survey highlight the variability in MSC manufacturing as clinical products and the need for harmonization. Until more informative potency assays become available, a more homogeneous approach to cell production may at least reduce variability in clinical trials and improve interpretation of results.


Asunto(s)
Enfermedad Injerto contra Huésped/terapia , Células Madre Mesenquimatosas/metabolismo , Europa (Continente) , Enfermedad Injerto contra Huésped/patología , Humanos , Células Madre Mesenquimatosas/citología , Encuestas y Cuestionarios
16.
J Transl Med ; 16(1): 213, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30064455

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) are a promising option to treat knee osteoarthritis (OA). Their safety and usefulness have been reported in several short-term clinical trials but less information is available on the long-term effects of MSC in patients with osteoarthritis. We have evaluated patients included in our previous randomized clinical trial (CMM-ART, NCT02123368) to determine their long-term clinical effect. MATERIALS: A phase I/II multicenter randomized clinical trial with active control was conducted between 2012 and 2014. Thirty patients diagnosed with knee OA were randomly assigned to Control group, intraarticularly administered hyaluronic acid alone, or to two treatment groups, hyaluronic acid together with 10 × 106 or 100 × 106 cultured autologous bone marrow-derived MSCs (BM-MSCs), and followed up for 12 months. After a follow up of 4 years adverse effects and clinical evolution, assessed using VAS and WOMAC scorings are reported. RESULTS: No adverse effects were reported after BM-MSCs administration or during the follow-up. BM-MSCs-administered patients improved according to VAS, median value (IQR) for Control, Low-dose and High-dose groups changed from 5 (3, 7), 7 (5, 8) and 6 (4, 8) to 7 (6, 7), 2 (2, 5) and 3 (3, 4), respectively at the end of follow up (Low-dose vs Control group, p = 0.01; High-dose vs Control group, p = 0.004). Patients receiving BM-MSCs also improved clinically according to WOMAC. Control group showed an increase median value of 4 points (- 11;10) while Low-dose and High-dose groups exhibited values of - 18 (- 28;- 9) and - 10 (- 21;- 3) points, respectively (Low-dose vs Control group p = 0.043). No clinical differences between the BM-MSCs receiving groups were found. CONCLUSIONS: Single intraarticular injection of in vitro expanded autologous BM-MSCs is a safe and feasible procedure that results in long-term clinical and functional improvement of knee OA.


Asunto(s)
Ácido Hialurónico/administración & dosificación , Ácido Hialurónico/uso terapéutico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Osteoartritis de la Rodilla/terapia , Anciano , Femenino , Estudios de Seguimiento , Humanos , Ácido Hialurónico/efectos adversos , Inyecciones Intraarticulares , Masculino , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Persona de Mediana Edad , Osteoartritis de la Rodilla/fisiopatología , Dolor/etiología , Dolor/fisiopatología , Trasplante Autólogo , Escala Visual Analógica
17.
Ann Hematol ; 97(11): 2089-2098, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29955943

RESUMEN

With tyrosine kinase inhibitors (TKI), chronic myeloid leukemia (CML) patients are achieving similar rates of survival to the general population and some treatment aspects such as adherence and drug-to-drug interactions (DDI) are becoming increasingly important. Our aim was to investigate the frequency and real clinical consequences of DDI between TKI and concurrent medications in CML. We performed a retrospective multicenter study including 105 patients receiving 134 TKI treatments. Sixty-three patients (60%) had at least one potential DDI. The mean number of concomitant medications was 4.8 (0-19). The mean number of DDI by TKI treatment was 1.2 (0-8); it increased with the number of concomitant medications and age in a significant manner. A total of 159 DDI were detected, involving 55 different drugs. The most common drug classes involved were proton pump inhibitors, statins, and antidepressants. A DDI-related clinical effect (toxicity and/or lack of efficacy) was suspected during the common course of patient follow-up in only five patients (4.7%). This number increased to 20% when data were centrally reviewed. Most of the adverse events (AE) attributed to DDIs were mild. The most common were diarrhea, vomiting, edema, cramps, and transaminitis. Nilotinib and dasatinib showed a tendency towards a higher risk of DDI compared with imatinib. There were no significant differences in AE frequency or in treatment response between patients with or without DDI. Due to their frequency, and their potential to cause clinically relevant effects, DDI are an important aspect of CML management.


Asunto(s)
Antidepresivos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Inhibidores de la Bomba de Protones , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Antidepresivos/administración & dosificación , Antidepresivos/efectos adversos , Interacciones Farmacológicas , Femenino , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/epidemiología , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de la Bomba de Protones/administración & dosificación , Inhibidores de la Bomba de Protones/efectos adversos
18.
Eur J Haematol ; 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30084111

RESUMEN

OBJECTIVE: No standard second-line treatment exists for acute graft-versus-host disease steroid-refractory (SR-aGvHD), and long-term outcomes remain poor. Mesenchymal stromal cells (MSCs) have been evaluated as treatment, but no disease model (DM) exists that integrates and extrapolates currently available evidence. The aim of this study was to develop such a DM to describe the natural history of SR-aGvHD and to predict long-term outcomes. METHOD: The DM was developed in collaboration with experts in haematology-oncology. Subsequently, a model simulation was run. Input parameters for transition and survival estimates were informed by published data of clinical trials on MSC treatment for SR-aGvHD. Parametric distributions were used to estimate long-term survival rates after MSCs. RESULTS: The newly developed DM is a cohort model that consists of eight health states. For the model simulation, we obtained data on 327 patients from 14 published phase II trials. Due to limited evidence, DM structure was simplified and several assumptions had to be made. Median overall survival was 3.2 years for complete response and 0.5 years for no complete response. CONCLUSION: The DM provides a comprehensive overview on the second-line treatment pathway for aGvHD and enables long-term predictions that can be used to perform a cost-effectiveness analysis comparing any treatment for SR-aGvHD.

19.
Exp Eye Res ; 154: 64-69, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27818317

RESUMEN

Dry eye disease is one of the most frequent pathological events that take place in the course of the graft versus host disease (GVHD), and is the main cause of deterioration in quality of life for patients. Thus, demonstration of dry eye signs in murine models of oGVHD is crucial for the validation of these models for the study of the disease. Given the increasing evidence that tear osmolarity is an important player of dry eye disease, our purpose in this study was to validate the use of a reliable method to assess tear osmolarity in mice: the electrical impedance method. Then, we wanted to test its utility with an oGVHD model. Tear volume assessment was also performed, using the phenol red thread test. We found differences in tear osmolarity in mice that received a transplant with cells from bone marrow and spleen (the GVHD group) when compared with mice that only received bone marrow cells (the BM group) at day 7 (362 ± 8 mOsm/l and 345 ± 9 mOsm/l respectively; P < 0.01) and day 21 (348 ± 19 mOsm/l vs. 326 ± 15 mOsm/l; P < 0.05). We found also differences in tear volume at day 14 (2.30 ± 0.61 mm in oGVHD group and 2.89 ± 0.62 mm in BM group; P = 0.06) and at day 21 (2.10 ± 0.30 mm in oGVHD group and 2.89 ± 0.32 mm in BM group; P < 0.01). Besides this, we observed reduction in epithelial thickness between the GVHD and BM groups (37.0 ± 6.2 µm and 43.6 ± 3.3 µm respectively; P < 0.05). These data show the usefulness of the electrical impedance method to measure tear osmolarity in mice. We can also conclude that this oGVHD model mimics the tear film alterations found in human dry eye disease, what contributes to give relevance to this model for the study of GVHD.


Asunto(s)
Síndromes de Ojo Seco/diagnóstico , Epitelio Corneal/metabolismo , Enfermedad Injerto contra Huésped/diagnóstico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Lágrimas/metabolismo , Animales , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/etiología , Síndromes de Ojo Seco/metabolismo , Epitelio Corneal/patología , Enfermedad Injerto contra Huésped/complicaciones , Enfermedad Injerto contra Huésped/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Concentración Osmolar
20.
Ann Hematol ; 96(1): 81-85, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27717993

RESUMEN

To determine whether a lower imatinib dose could minimize toxicity while maintaining the molecular response (MR), imatinib dose was reduced to 300 mg daily in 43 patients with chronic myeloid leukemia (CML) in sustained deep molecular response to first-line imatinib 400 mg daily. At the time of dose reduction, median duration of the deep response was 4.1 (interquartile range (IQR) 2.2-5.9) years; molecular response was MR4, MR4.5, and MR5 of the international scale in 6, 28, and 9 patients, respectively. Toxicity grade was 1, 2, and 3 in 28, 8, and 1 patients, respectively; 6 patients underwent dose reduction without having side effects. With a median of 1.6 (IQR 0.7-3.2) years on imatinib 300 mg daily, only one patient lost the deep molecular response to MR3. At the last follow-up, response was MR3, MR4, MR4.5, and MR5 in 1, 3, 9, and 30 patients, respectively. Toxicity improvement was observed in 23 (62.2 %) of the 37 patients with side effects, decreasing to grade 0 in 20 of them. All but one anemic patients improved (p = 0.01), the median Hb increase in this subgroup of patients being 1 g/dL. In CML patients with sustained deep response to the standard imatinib dose, reducing to 300 mg daily significantly improves tolerability and preserves efficacy.


Asunto(s)
Antineoplásicos/administración & dosificación , Mesilato de Imatinib/administración & dosificación , Leucemia Mieloide de Fase Crónica/diagnóstico , Leucemia Mieloide de Fase Crónica/tratamiento farmacológico , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA