Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(5): 1465-1477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332374

RESUMEN

Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.


Asunto(s)
Encéfalo , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen , Trastornos Psicóticos , Humanos , Trastornos Psicóticos/patología , Trastornos Psicóticos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Adulto , Adulto Joven , Adolescente , Síntomas Prodrómicos
2.
Hum Brain Mapp ; 43(2): 665-680, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622518

RESUMEN

The diameter of the human pupil tracks working memory processing and is associated with activity in the frontoparietal network. At the same time, recent neuroimaging research has linked human pupil fluctuations to activity in the salience network. In this combined functional magnetic resonance imaging (fMRI)/pupillometry study, we recorded the pupil size of healthy human participants while they performed a blockwise organized working memory task (N-back) inside an MRI scanner in order to monitor the pupil fluctuations associated neural activity during working memory processing. We first confirmed that mean pupil size closely followed working memory load. Combining this with fMRI data, we focused on blood oxygen level dependent (BOLD) correlates of mean pupil size modeled onto the task blocks as a parametric modulation. Interrogating this modulated task regressor, we were able to retrieve the frontoparietal network. Next, to fully exploit the within-block dynamics, we divided the blocks into 1 s time bins and filled these with corresponding pupil change values (first-order derivative of pupil size). We found that pupil change within N-back blocks was positively correlated with BOLD amplitudes in the areas of the salience network (namely bilateral insula, and anterior cingulate cortex). Taken together, fMRI with simultaneous measurement of pupil parameters constitutes a valuable tool to dissect working memory subprocesses related to both working memory load and salience of the presented stimuli.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Memoria a Corto Plazo/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Pupila/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
3.
Hum Brain Mapp ; 43(1): 207-233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368865

RESUMEN

Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013-12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi-)genetics. Finally, we highlight points where FreeSurfer-based hippocampal subfield studies may be optimized.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neuroimagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Estudios Multicéntricos como Asunto , Neuroimagen/métodos , Neuroimagen/normas , Control de Calidad
4.
Hum Brain Mapp ; 43(1): 341-351, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198905

RESUMEN

Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = -0.164 to -0.180). Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = -0.173 to -0.184). Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.


Asunto(s)
Amígdala del Cerebelo/patología , Cuerpo Estriado/patología , Trastorno Depresivo Mayor/patología , Hipocampo/patología , Neuroimagen , Tálamo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Estudios Multicéntricos como Asunto , Tálamo/diagnóstico por imagen
5.
Mol Psychiatry ; 26(9): 4839-4852, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32467648

RESUMEN

Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the relationship between obesity and brain structure using structural MRI (n = 6420) and genetic data (n = 3907) from the ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left fusiform gyrus) = -0.33). The observed regional distribution and effect size of cortical thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain structure under physiological and pathological brain conditions.


Asunto(s)
Trastorno Depresivo Mayor , Anciano , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Trastorno Depresivo Mayor/genética , Humanos , Imagen por Resonancia Magnética , Obesidad/genética , Factores de Riesgo
6.
Mol Psychiatry ; 25(7): 1511-1525, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31471575

RESUMEN

Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD.


Asunto(s)
Trastorno Depresivo Mayor/patología , Sustancia Blanca/patología , Adulto , Anciano , Anciano de 80 o más Años , Anisotropía , Estudios de Cohortes , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
7.
Nature ; 520(7546): 224-9, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25607358

RESUMEN

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.


Asunto(s)
Encéfalo/anatomía & histología , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Apoptosis/genética , Núcleo Caudado/anatomía & histología , Niño , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Sitios Genéticos/genética , Hipocampo/anatomía & histología , Humanos , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Tamaño de los Órganos/genética , Putamen/anatomía & histología , Caracteres Sexuales , Cráneo/anatomía & histología , Adulto Joven
8.
Proc Natl Acad Sci U S A ; 115(43): E10206-E10215, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30201713

RESUMEN

Ample evidence links dysregulation of the stress response to the risk for psychiatric disorders. However, we lack an integrated understanding of mechanisms that are adaptive during the acute stress response but potentially pathogenic when dysregulated. One mechanistic link emerging from rodent studies is the interaction between stress effectors and neurovascular coupling, a process that adjusts cerebral blood flow according to local metabolic demands. Here, using task-related fMRI, we show that acute psychosocial stress rapidly impacts the peak latency of the hemodynamic response function (HRF-PL) in temporal, insular, and prefrontal regions in two independent cohorts of healthy humans. These latency effects occurred in the absence of amplitude effects and were moderated by regulatory genetic variants of KCNJ2, a known mediator of the effect of stress on vascular responsivity. Further, hippocampal HRF-PL correlated with both cortisol response and genetic variants that influence the transcriptional response to stress hormones and are associated with risk for major depression. We conclude that acute stress modulates hemodynamic response properties as part of the physiological stress response and suggest that HRF indices could serve as endophenotype of stress-related disorders.


Asunto(s)
Células Endocrinas/fisiología , Hemodinámica/fisiología , Acoplamiento Neurovascular/fisiología , Estrés Psicológico/fisiopatología , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Variación Genética/genética , Humanos , Imagen por Resonancia Magnética/métodos
9.
Hum Brain Mapp ; 41(14): 4010-4023, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32597537

RESUMEN

Acute and chronic stress are important factors in the development of mental disorders. Reliable measurement of stress reactivity is therefore pivotal. Critically, experimental induction of stress often involves multiple "hits" and it is an open question whether individual differences in responses to an earlier stressor lead to habituation, sensitization, or simple additive effects on following events. Here, we investigated the effect of the individual cortisol response to intravenous catheter placement (IVP) on subsequent neural, psychological, endocrine, and autonomous stress reactivity. We used an established psychosocial stress paradigm to measure the acute stress response (Stress) and recovery (PostStress) in 65 participants. Higher IVP-induced cortisol responses were associated with lower pulse rate increases during stress recovery (b = -4.8 bpm, p = .0008) and lower increases in negative affect after the task (b = -4.2, p = .040). While the cortisol response to IVP was not associated with subsequent specific stress-induced neural activation patterns, the similarity of brain responses Pre- and PostStress was higher IVP-cortisol responders (t[64] = 2.35, p = .022) indicating faster recovery. In conclusion, preparatory stress induced by IVP reduced reactivity in a subsequent stress task by modulating the latency of stress recovery. Thus, an individually stronger preceding release of cortisol may attenuate a second physiological response and perceived stress suggesting that relative changes, not absolute levels are crucial for stress attribution. Our study highlights that considering the entire trajectory of stress induction during an experiment is important to develop reliable individual biomarkers.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Encéfalo/fisiología , Habituación Psicofisiológica/fisiología , Hidrocortisona/metabolismo , Red Nerviosa/fisiología , Estrés Fisiológico/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Adulto , Afecto/fisiología , Encéfalo/diagnóstico por imagen , Conectoma , Electrocardiografía , Femenino , Respuesta Galvánica de la Piel/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Hidrocortisona/sangre , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Oximetría , Saliva/metabolismo , Estrés Psicológico/sangre , Adulto Joven
10.
J Magn Reson Imaging ; 52(3): 739-751, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32073206

RESUMEN

BACKGROUND: Conventional T2 *-weighted functional magnetic resonance imaging (fMRI) is performed with echo-planar imaging (EPI) sequences that create substantial acoustic noise. The loud acoustic noise not only affects the activation of the auditory cortex, but may also interfere with resting state and task fMRI experiments. PURPOSE: To demonstrate the feasibility of a novel, quiet, T2 *, whole-brain blood oxygenation level-dependent (BOLD)-fMRI method, termed Looping Star, compared to conventional multislice gradient-echo EPI. STUDY TYPE: Prospective. PHANTOM/SUBJECTS: Glover stability QA phantom; 10 healthy volunteers. FIELD STRENGTH/SEQUENCE: 3.0T: gradient echo (GE)-EPI and T2 * Looping Star fMRI. ASSESSMENT: Looping Star fMRI was presented and compared to GE-EPI with a working memory (WM) task and resting state (RS) experiments. Temporal stability and acoustic measurements were obtained for both methods. Functional maps and activation accuracy were compared to evaluate the performance of the novel sequence. STATISTICAL TESTS: Mean and standard deviation values were analyzed for temporal stability and acoustic noise tests. Activation maps were assessed with one-sample t-tests and contrast estimates (CE). Paired t-tests and receiver operator characteristic (ROC) were used to compare fMRI sensitivity and performance. RESULTS: Looping Star presented a 98% reduction in sound pressure compared with GE-EPI, with stable temporal stability (0.09% percent fluctuation), but reduced temporal signal-to-noise ratio (tSNR) (mean difference = 15.9%). The novel method yielded consistent activations for RS and WM (83.4% and 69.5% relative BOLD sensitivity), which increased with task difficulty (mean CE 2-back = 0.56 vs. 0-back = 0.08, P < 0.05). A few differences in spatial activations were found between sequences, leading to a 4-8% lower activation accuracy with Looping Star. DATA CONCLUSION: Looping Star provides a suitable approach for whole-brain coverage with sufficient spatiotemporal resolution and BOLD sensitivity, with only 0.5 dB above ambient noise. From the comparison with GE-EPI, further developments of Looping Star fMRI should target increased sensitivity and spatial specificity for both RS and task experiments. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:739-751.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Humanos , Estudios Prospectivos
11.
BMC Psychiatry ; 20(1): 213, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393358

RESUMEN

BACKGROUND: A major research finding in the field of Biological Psychiatry is that symptom-based categories of mental disorders map poorly onto dysfunctions in brain circuits or neurobiological pathways. Many of the identified (neuro) biological dysfunctions are "transdiagnostic", meaning that they do not reflect diagnostic boundaries but are shared by different ICD/DSM diagnoses. The compromised biological validity of the current classification system for mental disorders impedes rather than supports the development of treatments that not only target symptoms but also the underlying pathophysiological mechanisms. The Biological Classification of Mental Disorders (BeCOME) study aims to identify biology-based classes of mental disorders that improve the translation of novel biomedical findings into tailored clinical applications. METHODS: BeCOME intends to include at least 1000 individuals with a broad spectrum of affective, anxiety and stress-related mental disorders as well as 500 individuals unaffected by mental disorders. After a screening visit, all participants undergo in-depth phenotyping procedures and omics assessments on two consecutive days. Several validated paradigms (e.g., fear conditioning, reward anticipation, imaging stress test, social reward learning task) are applied to stimulate a response in a basic system of human functioning (e.g., acute threat response, reward processing, stress response or social reward learning) that plays a key role in the development of affective, anxiety and stress-related mental disorders. The response to this stimulation is then read out across multiple levels. Assessments comprise genetic, molecular, cellular, physiological, neuroimaging, neurocognitive, psychophysiological and psychometric measurements. The multilevel information collected in BeCOME will be used to identify data-driven biologically-informed categories of mental disorders using cluster analytical techniques. DISCUSSION: The novelty of BeCOME lies in the dynamic in-depth phenotyping and omics characterization of individuals with mental disorders from the depression and anxiety spectrum of varying severity. We believe that such biology-based subclasses of mental disorders will serve as better treatment targets than purely symptom-based disease entities, and help in tailoring the right treatment to the individual patient suffering from a mental disorder. BeCOME has the potential to contribute to a novel taxonomy of mental disorders that integrates the underlying pathomechanisms into diagnoses. TRIAL REGISTRATION: Retrospectively registered on June 12, 2019 on ClinicalTrials.gov (TRN: NCT03984084).


Asunto(s)
Productos Biológicos , Trastornos Mentales , Trastornos Psicóticos , Trastornos de Ansiedad/diagnóstico , Miedo , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/genética , Recompensa
12.
Neuroimage ; 178: 11-22, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29733957

RESUMEN

The reward system may provide an interesting intermediate phenotype for anhedonia in affective disorders. Reward anticipation is characterized by an increase in arousal, and previous studies have linked the anterior cingulate cortex (ACC) to arousal responses such as dilation of the pupil. Here, we examined pupil dynamics during a reward anticipation task in forty-six healthy human subjects and evaluated its neural correlates using functional magnetic resonance imaging (fMRI). Pupil size showed a strong increase during monetary reward anticipation, a moderate increase during verbal reward anticipation and a decrease during control trials. For fMRI analyses, average pupil size and pupil change were computed in 1-s time bins during the anticipation phase. Activity in the ventral striatum was inversely related to the pupil size time course, indicating an early onset of activation and a role in reward prediction processing. Pupil dilations were linked to increased activity in the salience network (dorsal ACC and bilateral insula), which likely triggers an increase in arousal to enhance task performance. Finally, increased pupil size preceding the required motor response was associated with activity in the ventral attention network. In sum, pupillometry provides an effective tool for disentangling different phases of reward anticipation, with relevance for affective symptomatology.


Asunto(s)
Anticipación Psicológica/fisiología , Mapeo Encefálico/métodos , Encéfalo/fisiología , Reflejo Pupilar/fisiología , Recompensa , Adulto , Anhedonia/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
13.
Magn Reson Med ; 80(5): 2155-2172, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29573009

RESUMEN

PURPOSE: The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. THEORY AND METHODS: Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. RESULTS: Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. CONCLUSION: Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Algoritmos , Química Encefálica/fisiología , Simulación por Computador , Femenino , Humanos , Masculino , Vaina de Mielina/química , Fantasmas de Imagen , Agua/química
14.
Neuroimage ; 156: 65-77, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28483719

RESUMEN

Standard T2* weighted functional magnetic resonance imaging (fMRI) performed with echo-planar imaging (EPI) suffers from signal loss in the ventromedial prefrontal cortex (vmPFC) due to macroscopic field inhomogeneity. However, this region is of special interest to affective neuroscience and psychiatry. The Multi-echo EPI (MEPI) approach has several advantages over EPI but its performance against EPI in the vmPFC has not yet been examined in a study with sufficient statistical power using a task specifically eliciting activity in this region. We used a fear conditioning task with MEPI to compare the performance of MEPI and EPI in vmPFC and control regions in 32 healthy young subjects. We analyzed activity associated with short (12ms), standard (29ms) and long (46ms) echo times, and a voxel-wise combination of these three echo times. Behavioral data revealed successful differentiation of the conditioned versus safety stimulus; activity in the vmPFC was shown by the contrast "safety stimulus > conditioned stimulus" as in previous research and proved significantly stronger with the combined MEPI than standard single-echo EPI. Then, we aimed to demonstrate that the additional cluster extent (ventral extension) detected in the vmPFC with MEPI reflects activation in a relevant cluster (i.e., not just non-neuronal noise). To do this, we used resting state data from the same subjects to show that the time-course of this region was both connected to bilateral amygdala and the default mode network. Overall, we demonstrate that MEPI (by means of the weighted sum combination approach) outperforms standard EPI in vmPFC; MEPI performs always at least as good as the best echo time for a given brain region but provides all necessary echo times for an optimal BOLD sensitivity for the whole brain. This is relevant for affective neuroscience and psychiatry given the critical role of the vmPFC in emotion regulation.


Asunto(s)
Mapeo Encefálico/métodos , Imagen Eco-Planar/métodos , Corteza Prefrontal/diagnóstico por imagen , Adulto , Condicionamiento Clásico , Miedo/fisiología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Adulto Joven
16.
Neuroimage ; 139: 189-201, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27291493

RESUMEN

Resting state functional magnetic resonance imaging (rs-fMRI) is increasingly applied for the development of functional biomarkers in brain disorders. Recent studies have revealed spontaneous vigilance drifts during the resting state, involving changes in brain activity and connectivity that challenge the validity of uncontrolled rs-fMRI findings. In a combined rs-fMRI/eye tracking study, the pupil size of 32 healthy subjects after 2h of sleep restriction was recorded as an indirect index for activity of the locus coeruleus, the brainstem's noradrenergic arousal center. The spontaneous occurrence of pupil dilations, but not pupil size per se, was associated with increased activity of the salience network, thalamus and frontoparietal regions. In turn, spontaneous constrictions of the pupil were associated with increased activity in visual and sensorimotor regions. These results were largely replicated in a sample of 36 healthy subjects who did not undergo sleep restriction, although in this sample the correlation between thalamus and pupil dilation fell below whole-brain significance. Our data show that spontaneous pupil fluctuations during rest are indeed associated with brain circuitry involved in tonic alertness and vigilance. Pupillometry is an effective method to control for changes in tonic alertness during rs-fMRI.


Asunto(s)
Nivel de Alerta/fisiología , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Pupila/fisiología , Descanso/fisiología , Privación de Sueño/fisiopatología , Adolescente , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
17.
Neuroimage ; 128: 125-137, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747746

RESUMEN

The human hippocampal formation can be divided into a set of cytoarchitecturally and functionally distinct subregions, involved in different aspects of memory formation. Neuroanatomical disruptions within these subregions are associated with several debilitating brain disorders including Alzheimer's disease, major depression, schizophrenia, and bipolar disorder. Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these subregions, and in the genetic factors that affect them. For large-scale studies, automated extraction and subsequent genomic association studies of these hippocampal subregion measures may provide additional insight. Here, we evaluated the test-retest reliability and transplatform reliability (1.5T versus 3T) of the subregion segmentation module in the FreeSurfer software package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging Study, N=39), another elderly (Alzheimer's Disease Neuroimaging Initiative, ADNI-2, N=163) and another mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N=598). We also investigated agreement between the most recent version of this algorithm (v6.0) and an older version (v5.3), again using the ADNI-2 and MPIP cohorts in addition to a sample from the Netherlands Study for Depression and Anxiety (NESDA) (N=221). Finally, we estimated the heritability (h(2)) of the segmented subregion volumes using the full sample of young, healthy QTIM twins (N=728). Test-retest reliability was high for all twelve subregions in the 3T ADNI-2 sample (intraclass correlation coefficient (ICC)=0.70-0.97) and moderate-to-high in the 4T QTIM sample (ICC=0.5-0.89). Transplatform reliability was strong for eleven of the twelve subregions (ICC=0.66-0.96); however, the hippocampal fissure was not consistently reconstructed across 1.5T and 3T field strengths (ICC=0.47-0.57). Between-version agreement was moderate for the hippocampal tail, subiculum and presubiculum (ICC=0.78-0.84; Dice Similarity Coefficient (DSC)=0.55-0.70), and poor for all other subregions (ICC=0.34-0.81; DSC=0.28-0.51). All hippocampal subregion volumes were highly heritable (h(2)=0.67-0.91). Our findings indicate that eleven of the twelve human hippocampal subregions segmented using FreeSurfer version 6.0 may serve as reliable and informative quantitative phenotypes for future multi-site imaging genetics initiatives such as those of the ENIGMA consortium.


Asunto(s)
Hipocampo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/patología , Trastorno Depresivo/genética , Trastorno Depresivo/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo , Programas Informáticos
18.
Magn Reson Med ; 76(6): 1684-1696, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26822349

RESUMEN

PURPOSE: Diffusional kurtosis imaging (DKI) is an approach to characterizing the non-Gaussian fraction of water diffusion in biological tissue. However, DKI is highly susceptible to the low signal-to-noise ratio of diffusion-weighted images, causing low precision and a significant bias due to Rician noise distribution. Here, we evaluate precision and bias using weighted linear least squares fitting of different acquisition schemes including several multishell schemes, a diffusion spectrum imaging (DSI) scheme, as well as a compressed sensing reconstruction of undersampled DSI scheme. METHODS: Monte Carlo simulations were performed to study the three-dimensional distribution of the apparent kurtosis coefficient (AKC). Experimental data were acquired from one healthy volunteer with multiple repetitions, using the same acquisition schemes as for the simulations. RESULTS: The angular distribution of the bias and precision were very inhomogeneous. While axial kurtosis was significantly overestimated, radial kurtosis was underestimated. The precision of radial kurtosis was up to 10-fold lower than axial kurtosis. CONCLUSION: The noise bias behavior of DKI is highly complex and can cause overestimation as well as underestimation of the AKC even within one voxel. The acquisition scheme with three shells, suggested by Poot et al, provided overall the best performance. Magn Reson Med 76:1684-1696, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neuroimagen/métodos , Química Encefálica , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Hum Brain Mapp ; 36(2): 731-43, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25339617

RESUMEN

Functional magnetic resonance imaging (fMRI) activation detection within stimulus-based experimental paradigms is conventionally based on the assumption that activation effects remain constant over time. This assumption neglects the fact that the strength of activation may vary, for example, due to habituation processes or changing attention. Neither the functional form of time variation can be retrieved nor short-lasting effects can be detected by conventional methods. In this work, a new dynamic approach is proposed that allows to estimate time-varying effect profiles and hemodynamic response functions in event-related fMRI paradigms. To this end, we incorporate the time-varying coefficient methodology into the fMRI general regression framework. Inference is based on a voxelwise penalized least squares procedure. We assess the strength of activation and corresponding time variation on the basis of pointwise confidence intervals on a voxel level. Additionally, spatial clusters of effect curves are presented. Results of the analysis of an active oddball experiment show that activation effects deviating from a constant trend coexist with time-varying effects that exhibit different types of shapes, such as linear, (inversely) U-shaped or fluctuating forms. In a comparison to conventional approaches, like classical SPM, we observe that time-constant methods are rather insensitive to detect temporary effects, because these do not emerge when aggregated across the entire experiment. Hence, it is recommended to base activation detection analyses not merely on time-constant procedures but to include flexible time-varying effects that harbour valuable information on individual response patterns.


Asunto(s)
Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos , Procesamiento de Señales Asistido por Computador , Percepción Auditiva , Encéfalo/irrigación sanguínea , Hemodinámica , Humanos , Masculino , Factores de Tiempo
20.
J Neurophysiol ; 112(6): 1267-76, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24920020

RESUMEN

Sleep disturbances are prevalent in clinical anxiety, but it remains unclear whether they are cause and/or consequence of this condition. Fear conditioning constitutes a valid laboratory model for the acquisition of normal and pathological anxiety. To explore the relationship between disturbed sleep and anxiety in more detail, the present study evaluated the effect of partial sleep deprivation (SD) on fear conditioning in healthy individuals. The neural correlates of 1) nonassociative learning and physiological processing and 2) associative learning (differential fear conditioning) were addressed. Measurements entailed simultaneous functional MRI, EEG, skin conductance response (SCR), and pulse recordings. Regarding nonassociative learning, partial SD resulted in a generalized failure to habituate during fear conditioning, as evidenced by reduced habituation of SCR and hypothalamus responses to all stimuli. Furthermore, SCR and hypothalamus activity were correlated, supporting their functional relationship. Regarding associative learning, effects of partial SD on the acquisition of conditioned fear were weaker and did not reach statistical significance. The hypothalamus plays an integral role in the regulation of sleep and autonomic arousal. Thus sleep disturbances may play a causal role in the development of normal and possibly pathological fear by increasing the susceptibility of the sympathetic nervous system to stressful experiences.


Asunto(s)
Respuesta Galvánica de la Piel , Habituación Psicofisiológica , Hipotálamo/fisiopatología , Privación de Sueño/fisiopatología , Adulto , Ansiedad/fisiopatología , Aprendizaje por Asociación , Condicionamiento Clásico , Miedo , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA