Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 208(2): 142-154, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163754

RESUMEN

Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.


Asunto(s)
Asma , Hipersensibilidad , Microbiota , Femenino , Masculino , Humanos , Transcriptoma , Ruidos Respiratorios/genética , Asma/genética , Microbiota/genética
2.
Ecotoxicol Environ Saf ; 271: 115971, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237397

RESUMEN

Wastewater treatment plants (WWTPs) are considered reservoirs of antibiotic resistance genes (ARGs). Given that plasmid-mediated horizontal gene transfer plays a critical role in disseminating ARGs in the environment, it is important to inspect the transfer potential of transmissible plasmids to have a better understanding of whether these mobile ARGs can be hosted by opportunistic pathogens and should be included in One Health's considerations. In this study, we used a fluorescent-reporter-gene based exogenous isolation approach to capture extended-spectrum beta-lactamases encoding mobile determinants from sewer microbiome samples that enter an urban water system (UWS) in Denmark. After screening and sequencing, we isolated a ∼73 Kbp IncN plasmid (pDK_DARWIN) that harboured and expressed multiple ARGs. Using a dual fluorescent reporter gene system, we showed that this plasmid can transfer into resident urban water communities. We demonstrated the transfer of pDK_DARWIN to microbiome members of both the sewer (in the upstream UWS compartment) and wastewater treatment (in the downstream UWS compartment) microbiomes. Sequence similarity search across curated plasmid repositories revealed that pDK_DARWIN derives from an IncN backbone harboured by environmental and nosocomial Enterobacterial isolates. Furthermore, we searched for pDK_DARWIN sequence matches in UWS metagenomes from three countries, revealing that this plasmid can be detected in all of them, with a higher relative abundance in hospital sewers compared to residential sewers. Overall, this study demonstrates that this IncN plasmid is prevalent across Europe and an efficient vector capable of disseminating multiple ARGs in the urban water systems.


Asunto(s)
Antibacterianos , Aguas Residuales , Antibacterianos/análisis , Plásmidos/genética , Farmacorresistencia Microbiana/genética , Agua , Genes Bacterianos
3.
Am J Respir Crit Care Med ; 204(2): 149-158, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33730519

RESUMEN

Rationale: Childhood asthma is often preceded by recurrent episodes of asthma-like symptoms, which can be triggered by both viral and bacterial agents. Recent randomized controlled trials have shown that azithromycin treatment reduces episode duration and severity through yet undefined mechanisms. Objectives: To study the influence of the airway microbiota on the effect of azithromycin treatment during acute episodes of asthma-like symptoms. Methods: Children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) cohort with recurrent asthma-like symptoms aged 12-36 months were randomized during acute episodes to azithromycin or placebo as previously reported. Before randomization, hypopharyngeal aspirates were collected and examined by 16S ribosomal RNA gene amplicon sequencing. Measurements and Main Results: In 139 airway samples from 68 children, episode duration after randomization was associated with microbiota richness (7.5% increased duration per 10 additional operational taxonomic units [OTUs]; 95% confidence interval, 1-14%; P = 0.025), with 15 individual OTUs (including several Neisseria and Veillonella), and with microbial pneumotypes defined from weighted UniFrac distances (longest durations in a Neisseria-dominated pneumotype). Microbiota richness before treatment increased the effect of azithromycin by 10% per 10 additional OTUs, and more OTUs were positively versus negatively associated with an increased azithromycin effect (82 vs. 58; P = 0.0032). Furthermore, effect modification of azithromycin was found for five individual OTUs (three OTUs increased and two OTUs decreased the effect; q < 0.05). Conclusions: The airway microbiota in acute episodes of asthma-like symptoms is associated with episode duration and modifies the effect of azithromycin treatment of the episodes in preschool children with recurrent asthma-like symptoms. Clinical trial registered with www.clinicaltrials.gov (NCT01233297).


Asunto(s)
Antibacterianos/uso terapéutico , Asma/tratamiento farmacológico , Asma/microbiología , Azitromicina/uso terapéutico , Microbiota/efectos de los fármacos , Reinfección/tratamiento farmacológico , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Estudios Prospectivos , Reinfección/microbiología
4.
Environ Microbiol ; 22(1): 32-44, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31602783

RESUMEN

Horizontal gene transfer via plasmids plays a pivotal role in microbial evolution. The forces that shape plasmidomes functionality and distribution in natural environments are insufficiently understood. Here, we present a comparative study of plasmidomes across adjacent microbial environments present in different individual rumen microbiomes. Our findings show that the rumen plasmidome displays enormous unknown functional potential currently unannotated in available databases. Nevertheless, this unknown functionality is conserved and shared with published rat gut plasmidome data. Moreover, the rumen plasmidome is highly diverse compared with the microbiome that hosts these plasmids, across both similar and different rumen habitats. Our analysis demonstrates that its structure is shaped more by stochasticity than selection. Nevertheless, the plasmidome is an active partner in its intricate relationship with the host microbiome with both interacting with and responding to their environment.


Asunto(s)
Bacterias/genética , Microbiota/genética , Plásmidos/genética , Rumen/microbiología , Animales , Transferencia de Gen Horizontal
5.
J Exp Bot ; 71(18): 5603-5614, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32463450

RESUMEN

Non-invasive X-ray computed tomography (XRCT) is increasingly used in rhizosphere research to visualize development of soil-root interfaces in situ. However, exposing living systems to X-rays can potentially impact their processes and metabolites. In order to evaluate these effects, we assessed the responses of rhizosphere processes 1 and 24 h after a low X-ray exposure (0.81 Gy). Changes in root gene expression patterns occurred 1 h after exposure with down-regulation of cell wall-, lipid metabolism-, and cell stress-related genes, but no differences remained after 24 h. At either time point, XRCT did not affect either root antioxidative enzyme activities or the composition of the rhizosphere bacterial microbiome and microbial growth parameters. The potential activities of leucine aminopeptidase and phosphomonoesterase were lower at 1 h, but did not differ from the control 24 h after exposure. A time delay of 24 h after a low X-ray exposure (0.81 Gy) was sufficient to reverse any effects on the observed rhizosphere systems. Our data suggest that before implementing novel experimental designs involving XRCT, a study on its impact on the investigated processes should be conducted.


Asunto(s)
Rizosfera , Microbiología del Suelo , Expresión Génica , Raíces de Plantas , Tomografía Computarizada por Rayos X
6.
Artículo en Inglés | MEDLINE | ID: mdl-30885897

RESUMEN

The gut is a hot spot for transfer of antibiotic resistance genes from ingested exogenous bacteria to the indigenous microbiota. The objective of this study was to determine the fate of two nearly identical blaCMY-2-harboring plasmids introduced into the human fecal microbiota by two Escherichia coli strains isolated from a human and from poultry meat. The chromosome and the CMY-2-encoding plasmid of both strains were labeled with distinct fluorescent markers (mCherry and green fluorescent protein [GFP]), allowing fluorescence-activated cell sorting (FACS)-based tracking of the strain and the resident bacteria that have acquired its plasmid. Each strain was introduced into an established in vitro gut model (CoMiniGut) inoculated with individual feces from ten healthy volunteers. Fecal samples collected 2, 6, and 24 h after strain inoculation were analyzed by FACS and plate counts. Although the human strain survived better than the poultry meat strain, both strains transferred their plasmids to the fecal microbiota at concentrations as low as 102 CFU/ml. Strain survival and plasmid transfer varied significantly depending on inoculum concentration and individual fecal microbiota. Identification of transconjugants by 16S rRNA gene sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revealed that the plasmids were predominantly acquired by Enterobacteriaceae species, such as E. coli and Hafnia alvei Our experimental data demonstrate that exogenous E. coli of human or animal origin can readily transfer CMY-2-encoding IncI1 plasmids to the human fecal microbiota. Small amounts of the exogenous strain are sufficient to ensure plasmid transfer if the strain is able to survive the gastric environment.


Asunto(s)
Enterobacteriaceae/genética , Escherichia coli/genética , Heces/microbiología , Plásmidos/genética , Humanos , ARN Ribosómico 16S/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , beta-Lactamasas/genética
7.
Environ Microbiol ; 21(7): 2426-2439, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30990945

RESUMEN

Long-term agricultural fertilization strategies gradually change soil properties including the associated microbial communities. Cultivated crops recruit beneficial microbes from the surrounding soil environment via root exudates. In this study, we aimed to investigate the effects of long-term fertilization strategies across field sites on the rhizosphere prokaryotic (Bacteria and Archaea) community composition and plant performance. We conducted growth chamber experiments with lettuce (Lactuca sativa L.) cultivated in soils from two long-term field experiments, each of which compared organic versus mineral fertilization strategies. 16S rRNA gene amplicon sequencing revealed the assemblage of a rhizosphere core microbiota shared in all lettuce plants across soils, going beyond differences in community composition depending on field site and fertilization strategies. The enhanced expression of several plant genes with roles in oxidative and biotic stress signalling pathways in lettuce grown in soils with organic indicates an induced physiological status in plants. Lettuce plants grown in soils with different fertilization histories were visibly free of stress symptoms and achieved comparable biomass. This suggests a positive aboveground plant response to belowground plant-microbe interactions in the rhizosphere. Besides effects of fertilization strategy and field site, our results demonstrate the crucial role of the plant in driving rhizosphere microbiota assemblage.


Asunto(s)
Bacterias/aislamiento & purificación , Fertilizantes/análisis , Lactuca/microbiología , Minerales/metabolismo , Microbiología del Suelo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biomasa , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Lactuca/metabolismo , Microbiota , Minerales/análisis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Suelo/química
8.
Microb Ecol ; 78(3): 764-780, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30903202

RESUMEN

We used direct DNA amplification from soil extracts to analyze microbial communities from an elevational transect in the German Alps by parallel metabarcoding of bacteria (16S rRNA), fungi (ITS2), and myxomycetes (18S rRNA). For the three microbial groups, 5710, 6133, and 261 operational taxonomic units (OTU) were found. For the latter group, we can relate OTUs to barcodes from fruit bodies sampled over a 4-year period. The alpha diversity of myxomycetes was positively correlated with that of bacteria. Vegetation type was found to be the main explanatory parameter for the community composition of all three groups and a substantial species turnover with elevation was observed. Bacteria and fungi display similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae show a more patchy distribution, though still clearly stratified between taxa, which seems to be a response to both structural properties of the habitat and interaction with specific bacterial and fungal taxa. Finally, we report a high number of myxomycete OTUs not represented in a reference database from fructifications, which might represent novel species.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Mixomicetos/aislamiento & purificación , Suelo/parasitología , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , ADN de Hongos/genética , ADN Protozoario/genética , Hongos/clasificación , Hongos/genética , Alemania , Mixomicetos/genética , Filogenia , ARN Ribosómico 18S/genética , Microbiología del Suelo
9.
BMC Microbiol ; 18(1): 223, 2018 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-30579350

RESUMEN

BACKGROUND: We performed a 12-month cohort study of the stability and resilience of the intestinal microbiota of healthy children in daycare in Denmark in relation to diarrheal events and exposure to known risk factors for gastrointestinal health such as travelling and antibiotic use. In addition, we analyzed how gut microbiota recover from such exposures. RESULTS: We monitored 32 children in daycare aged 1-6 years. Fecal samples were submitted every second month during a one-year observational period. Information regarding exposures and diarrheal episodes was obtained through questionnaires. Bacterial communities were identified using 16S rRNA gene sequencing. The core microbiota (mean abundance > 95%) dominated the intestinal microbiota, and none of the tested exposures (diarrheal events, travel, antibiotic use) were associated with decreases in the relative abundance of the core microbiota. Samples exhibited lower intra-individual variation than inter-individual variation. Half of all the variation between samples was explained by which child a sample originated from. Age explained 7.6-9.6% of the variation, while traveling, diarrheal events, and antibiotic use explained minor parts of the beta diversity. We found an age-dependent increase of alpha diversity in children aged 1-3 years, and while diarrheal events caused a decrease in alpha diversity, a recovery time of 40-45 days was observed. Among children having had a diarrheal event, we observed a 10x higher relative abundance of Prevotella. After travelling, a higher abundance of two Bacteroides species and 40% less Lachnospiraceae were seen. Antibiotic use did not correlate with changes in the abundance of any bacteria. CONCLUSION: We present data showing that Danish children in daycare have stable intestinal microbiota, resilient to the exposures investigated. An early age-dependent increase in the diversity was demonstrated. Diarrheal episodes decreased alpha diversity with an estimated recovery time of 40-45 days.


Asunto(s)
Bacterias/aislamiento & purificación , Guarderías Infantiles/estadística & datos numéricos , Microbioma Gastrointestinal , Intestinos/microbiología , Factores de Edad , Bacterias/clasificación , Bacterias/genética , Niño , Preescolar , Estudios de Cohortes , Dinamarca , Diarrea/microbiología , Heces/microbiología , Femenino , Humanos , Lactante , Masculino , Filogenia
10.
Microbiol Spectr ; 12(4): e0359023, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38451230

RESUMEN

Shotgun metagenomics enables the reconstruction of complex microbial communities at a high level of detail. Such an approach can be conducted using both short-read and long-read sequencing data, as well as a combination of both. To assess the pros and cons of these different approaches, we used 22 fecal DNA extracts collected weekly for 11 weeks from two respective lab mice to study seven performance metrics over four combinations of sequencing depth and technology: (i) 20 Gbp of Illumina short-read data, (ii) 40 Gbp of short-read data, (iii) 20 Gbp of PacBio HiFi long-read data, and (iv) 40 Gbp of hybrid (20 Gbp of short-read +20 Gbp of long-read) data. No strategy was best for all metrics; instead, each one excelled across different metrics. The long-read approach yielded the best assembly statistics, with the highest N50 and lowest number of contigs. The 40 Gbp short-read approach yielded the highest number of refined bins. Finally, the hybrid approach yielded the longest assemblies and the highest mapping rate to the bacterial genomes. Our results suggest that while long-read sequencing significantly improves the quality of reconstructed bacterial genomes, it is more expensive and requires deeper sequencing than short-read approaches to recover a comparable amount of reconstructed genomes. The most optimal strategy is study-specific and depends on how researchers assess the trade-off between the quantity and quality of recovered genomes.IMPORTANCEMice are an important model organism for understanding the gut microbiome. When studying these gut microbiomes using DNA techniques, researchers can choose from technologies that use short or long DNA reads. In this study, we perform an extensive benchmark between short- and long-read DNA sequencing for studying mice gut microbiomes. We find that no one approach was best for all metrics and provide information that can help guide researchers in planning their experiments.


Asunto(s)
Genoma Bacteriano , Microbiota , Animales , Ratones , Análisis de Secuencia de ADN/métodos , Microbiota/genética , Metagenómica/métodos , ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
11.
Environ Int ; 183: 108351, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041983

RESUMEN

Plasmids have been a concern in the dissemination and evolution of antibiotic resistance in the environment. In this study, we investigated the total pool of plasmids (plasmidome) and its derived antibiotic resistance genes (ARGs) in different compartments of urban water systems (UWSs) in three European countries representing different antibiotic usage regimes. We applied a direct plasmidome approach using wet-lab methods to enrich circular DNA in the samples, followed by shotgun sequencing and in silico contig circularisation. We identified 9538 novel sequences in a total of 10,942 recovered circular plasmids. Of these, 66 were identified as conjugative, 1896 mobilisable and 8970 non-mobilisable plasmids. The UWSs' plasmidome was dominated by small plasmids (≤10 Kbp) representing a broad diversity of mobility (MOB) types and incompatibility (Inc) groups. A shared collection of plasmids from different countries was detected in all treatment compartments, and plasmids could be source-tracked in the UWSs. More than half of the ARGs-encoding plasmids carried mobility genes for mobilisation/conjugation. The richness and abundance of ARGs-encoding plasmids generally decreased with the flow, while we observed that non-mobilisable ARGs-harbouring plasmids maintained their abundance in the Spanish wastewater treatment plant. Overall, our work unravels that the UWS plasmidome is dominated by cryptic (i.e., non-mobilisable, non-typeable and previously unknown) plasmids. Considering that some of these plasmids carried ARGs, were prevalent across three countries and could persist throughout the UWSs compartments, these results should alarm and call for attention.


Asunto(s)
Antibacterianos , Agua , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Plásmidos
12.
Microbiome ; 12(1): 87, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730321

RESUMEN

BACKGROUND: In environmental bacteria, the selective advantage of antibiotic resistance genes (ARGs) can be increased through co-localization with genes such as other ARGs, biocide resistance genes, metal resistance genes, and virulence genes (VGs). The gut microbiome of infants has been shown to contain numerous ARGs, however, co-localization related to ARGs is unknown during early life despite frequent exposures to biocides and metals from an early age. RESULTS: We conducted a comprehensive analysis of genetic co-localization of resistance genes in a cohort of 662 Danish children and examined the association between such co-localization and environmental factors as well as gut microbial maturation. Our study showed that co-localization of ARGs with other resistance and virulence genes is common in the early gut microbiome and is associated with gut bacteria that are indicative of low maturity. Statistical models showed that co-localization occurred mainly in the phylum Proteobacteria independent of high ARG content and contig length. We evaluated the stochasticity of co-localization occurrence using enrichment scores. The most common forms of co-localization involved tetracycline and fluoroquinolone resistance genes, and, on plasmids, co-localization predominantly occurred in the form of class 1 integrons. Antibiotic use caused a short-term increase in mobile ARGs, while non-mobile ARGs showed no significant change. Finally, we found that a high abundance of VGs was associated with low gut microbial maturity and that VGs showed even higher potential for mobility than ARGs. CONCLUSIONS: We found that the phenomenon of co-localization between ARGs and other resistance and VGs was prevalent in the gut at the beginning of life. It reveals the diversity that sustains antibiotic resistance and therefore indirectly emphasizes the need to apply caution in the use of antimicrobial agents in clinical practice, animal husbandry, and daily life to mitigate the escalation of resistance. Video Abstract.


Asunto(s)
Antibacterianos , Bacterias , Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Antibacterianos/farmacología , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Dinamarca , Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Femenino , Heces/microbiología , Farmacorresistencia Microbiana/genética , Masculino , Estudios de Cohortes , Recién Nacido
13.
Cell Host Microbe ; 32(6): 875-886.e9, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38754416

RESUMEN

Plasmid-encoded type IV-A CRISPR-Cas systems lack an acquisition module, feature a DinG helicase instead of a nuclease, and form ribonucleoprotein complexes of unknown biological functions. Type IV-A3 systems are carried by conjugative plasmids that often harbor antibiotic-resistance genes and their CRISPR array contents suggest a role in mediating inter-plasmid conflicts, but this function remains unexplored. Here, we demonstrate that a plasmid-encoded type IV-A3 system co-opts the type I-E adaptation machinery from its host, Klebsiella pneumoniae (K. pneumoniae), to update its CRISPR array. Furthermore, we reveal that robust interference of conjugative plasmids and phages is elicited through CRISPR RNA-dependent transcriptional repression. By silencing plasmid core functions, type IV-A3 impacts the horizontal transfer and stability of targeted plasmids, supporting its role in plasmid competition. Our findings shed light on the mechanisms and ecological function of type IV-A3 systems and demonstrate their practical efficacy for countering antibiotic resistance in clinically relevant strains.


Asunto(s)
Sistemas CRISPR-Cas , Conjugación Genética , Klebsiella pneumoniae , Plásmidos , Plásmidos/genética , Klebsiella pneumoniae/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Transferencia de Gen Horizontal , Bacteriófagos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
14.
Appl Environ Microbiol ; 79(3): 1008-17, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23204426

RESUMEN

In a study aiming to assess bacterial evolution in complex growth media, we evaluated the long-term adaptive response of Escherichia coli MC1000 in Luria-Bertani (LB) medium. Seven parallel populations were founded and followed over 150 days in sequential batch cultures under three different oxygen conditions (defined environments), and 19 evolved forms were isolated. The emergence of forms with enhanced fitness was evident in competition experiments of all evolved forms versus the ancestral strain. The evolved forms were then subjected to phenotypic and genomic analyses relative to the ancestor. Profound changes were found in their phenotypes as well as whole-genome sequences. Interestingly, considerable heterogeneity was found at the intrapopulational level. However, consistently occurring parallel adaptive responses were found across all populations. The evolved forms all contained a mutation in galR, a repressor of the galactose operon. Concomitantly, the new forms revealed enhanced growth on galactose as well as galactose-containing disaccharides. This response was likely driven by the LB medium.


Asunto(s)
Adaptación Biológica , Microbiología Ambiental , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Variación Genética , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Genotipo , Estudios Longitudinales , Oxígeno/metabolismo , Fenotipo , Análisis de Secuencia de ADN
15.
BMC Microbiol ; 13: 303, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-24373613

RESUMEN

BACKGROUND: This work provides the first description of the bacterial population of the lung microbiota in mice. The aim of this study was to examine the lung microbiome in mice, the most used animal model for inflammatory lung diseases such as COPD, cystic fibrosis and asthma.Bacterial communities from broncho-alveolar lavage fluids and lung tissue were compared to samples taken from fecal matter (caecum) and vaginal lavage fluid from female BALB/cJ mice. RESULTS: Using a customized 16S rRNA sequencing protocol amplifying the V3-V4 region our study shows that the mice have a lung microbiome that cluster separately from mouse intestinal microbiome (caecum). The mouse lung microbiome is dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Cyanobacteria overlapping the vaginal microbiome. We also show that removal of host tissue or cells from lung fluid during the DNA extraction step has an impact on the resulting bacterial community profile. Sample preparation needs to be considered when choosing an extraction method and interpreting data. CONCLUSIONS: We have consistently amplified bacterial DNA from mouse lungs that is distinct from the intestinal microbiome in these mice. The gut microbiome has been extensively studied for its links to development of disease. Here we suggest that also the lung microbiome could be important in relation to inflammatory lung diseases. Further research is needed to understand the contribution of the lung microbiome and the gut-lung axis to the development of lung diseases such as COPD and asthma.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Tracto Gastrointestinal/microbiología , Pulmón/microbiología , Microbiota , Vagina/microbiología , Animales , Líquido del Lavado Bronquioalveolar/microbiología , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Heces/microbiología , Femenino , Metagenoma , Ratones , Ratones Endogámicos BALB C , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ducha Vaginal
16.
Biotechnol Bioeng ; 110(12): 3071-4, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24014288

RESUMEN

This Commentary by Madsen, Burmølle, and Sørensen discusses the article Non-invasive in situ monitoring and quantification of TOL plasmid segregational loss within Pseudomonas putida biofilms by Ma, Katzenmeyer, and Bryers. (2013. Biotechnol Bioeng. 110(11):2949-2958. DOI: 10.1002/bit.24953).


Asunto(s)
Biopelículas/crecimiento & desarrollo , Inestabilidad Genómica , Plásmidos/análisis , Pseudomonas putida/genética , Pseudomonas putida/fisiología
17.
Nat Commun ; 14(1): 8526, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135681

RESUMEN

Despite their crucial importance for human health, there is still relatively limited knowledge on how the gut resistome changes or responds to antibiotic treatment across ages, especially in the latter case. Here, we use fecal metagenomic data from 662 Danish infants and 217 young adults to fill this gap. The gut resistomes are characterized by a bimodal distribution driven by E. coli composition. The typical profile of the gut resistome differs significantly between adults and infants, with the latter distinguished by higher gene and plasmid abundances. However, the predominant antibiotic resistance genes (ARGs) are the same. Antibiotic treatment reduces bacterial diversity and increased ARG and plasmid abundances in both cohorts, especially core ARGs. The effects of antibiotic treatments on the gut microbiome last longer in adults than in infants, and different antibiotics are associated with distinct impacts. Overall, this study broadens our current understanding of gut resistome dynamics and the impact of antibiotic treatment across age groups.


Asunto(s)
Antibacterianos , Microbioma Gastrointestinal , Lactante , Adulto Joven , Humanos , Antibacterianos/farmacología , Microbioma Gastrointestinal/genética , Escherichia coli/genética , Bacterias/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos
18.
JAMA Netw Open ; 6(12): e2348414, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113041

RESUMEN

Importance: Antibiotic irrigation of breast implants is widely used internationally, but no clinical study has investigated the pharmacokinetics of antibiotic prophylaxis in the breast implant pocket. Objectives: To evaluate how long locally applied gentamicin, cefazolin, and vancomycin concentrations in the implant pocket remain above the minimum inhibitory concentration (MIC) for the most common bacterial infections and to measure systemic uptake. Design, Setting, and Participants: This prospective cohort study was performed at the Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark, between October 25, 2021, and September 22, 2022, among 40 patients undergoing implant-based breast reconstruction who were part of the ongoing BREAST-AB trial (Prophylactic Treatment of Breast Implants With a Solution of Gentamicin, Vancomycin and Cefazolin Antibiotics for Women Undergoing Breast Reconstructive Surgery: a Randomized Controlled Trial). Patients were randomized to receive locally applied gentamicin, cefazolin, and vancomycin or placebo. Samples were obtained from the surgical breast drain and blood up to 10 days postoperatively. Exposures: The breast implant and the implant pocket were irrigated with 160 µg/mL of gentamicin, 2000 µg/mL of cefazolin, and 2000 µg/mL of vancomycin in a 200-mL saline solution. Main Outcomes and Measures: The primary outcome was the duration of antibiotic concentrations above the MIC breakpoint for Staphylococcus aureus according to the Clinical and Laboratory Standards Institute: gentamicin, 4 µg/mL; cefazolin, 2 µg/mL; and vancomycin, 2 µg/mL. Secondary outcomes included the time above the MIC for Pseudomonas aeruginosa and other relevant bacteria, as well as systemic uptake. Results: The study included 40 patients (median age, 44.6 years [IQR, 38.3-51.4 years]; median body mass index, 23.9 [IQR, 21.7-25.9]) with a median number of 3 drain samples (range, 1-10 drain samples) and 2 blood samples (range, 0-6 blood samples). Vancomycin and cefazolin remained above the MIC for S aureus significantly longer than gentamicin (gentamicin, 0.9 days [95% CI, 0.5-1.2 days] for blood samples vs 6.9 days [95% CI, 2.9 to 10.9 days] for vancomycin [P = .02] vs 3.7 days [95% CI, 2.2-5.2 days] for cefazolin [P = .002]). The gentamicin level remained above the MIC for P aeruginosa for 1.3 days (95% CI, 1.0-1.5 days). Only cefazolin was detectable in blood samples, albeit in very low concentrations (median concentration, 0.04 µg/mL [range, 0.007-0.1 µg/mL]). Conclusions and Relevance: This study suggests that patients treated with triple-antibiotic implant irrigation during breast reconstruction receive adequate prophylaxis for S aureus and other common implant-associated, gram-positive bacteria. However, the protection against P aeruginosa may be inadequate.


Asunto(s)
Cefazolina , Mamoplastia , Adulto , Femenino , Humanos , Antibacterianos , Profilaxis Antibiótica , Cefazolina/farmacocinética , Gentamicinas/farmacocinética , Estudios Prospectivos , Staphylococcus aureus , Vancomicina/farmacocinética , Persona de Mediana Edad
19.
Environ Int ; 158: 106899, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598063

RESUMEN

Antibiotic-resistant pathogens constitute an escalating public health concern. Hence a better understanding of the underlying processes responsible for this expansion is urgently needed. Co-selection of heavy metal/biocide and antibiotic resistance genes (ARGs) has been suggested as one potential mechanism promoting the proliferation of antimicrobial resistance (AMR). This paper aims to elucidate this interplay and exploit differences in antibiotic usage to infer patterns of co-selection by the non-antibiotic factors metals and biocides in the context of pig farming. We examined 278 gut metagenomes from pigs with continuous antibiotic exposure, only at weaning and at no exposure. Metals as growth promoters and biocides as disinfectants are currently used with little restrictions in stock farming. The pigs under continuous antibiotic exposure displayed the highest co-occurrence of ARGs and other genetic elements while the pigs under limited use of antibiotics still showed abundant co-occurrences. Pathogens belonging to Enterobacteriaceae displayed increased co-occurrence phenomena, suggesting that this maintenance is not a random selection process from a mobilized pool but pertains to specific phylogenetic clades. These results suggest that metals and biocides displayed strong selective pressures on ARGs exerted by intensive farming, regardless of the current use of antibiotics.


Asunto(s)
Desinfectantes , Metales Pesados , Animales , Antibacterianos/farmacología , Genes Bacterianos , Metagenoma , Metales Pesados/toxicidad , Filogenia , Porcinos
20.
Gut Microbes ; 14(1): 2005407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34965188

RESUMEN

Type 2 diabetes (T2D) management is based on combined pharmacological and lifestyle intervention approaches. While their clinical benefits are well studied, less is known about their effects on the gut microbiota. We aimed to investigate if an intensive lifestyle intervention combined with conventional standard care leads to a different gut microbiota composition compared to standard care alone treatment in individuals with T2D, and if gut microbiota is associated with the clinical benefits of the treatments. Ninety-eight individuals with T2D were randomized to either an intensive lifestyle intervention combined with standard care group (N = 64), or standard care alone group (N = 34) for 12 months. All individuals received standardized, blinded, target-driven medical therapy, and individual counseling. The lifestyle intervention group moreover received intensified physical training and dietary plans. Clinical characteristics and fecal samples were collected at baseline, 3-, 6-, 9-, and 12-month follow-up. The gut microbiota was profiled with 16S rRNA gene amplicon sequencing. There were no statistical differences in the change of gut microbiota composition between treatments after 12 months, except minor and transient differences at month 3. The shift in gut microbiota alpha diversity at all time windows did not correlate with the change in clinical characteristics, and the gut microbiota did not mediate the treatment effect on clinical characteristics. The clinical benefits of intensive lifestyle and/or pharmacological interventions in T2D are unlikely to be explained by, or causally related to, changes in the gut microbiota composition.


Asunto(s)
Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/psicología , Microbioma Gastrointestinal , Estilo de Vida , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Dieta , Ejercicio Físico , Heces/microbiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA