RESUMEN
Urban air fine particles are a major health-relating problem. However, it is not well understood how the health-relevant features of fine particles should be monitored. Limitations of PM2.5 (mass concentration of sub 2.5 µm particles), which is commonly used in the health effect estimations, have been recognized and, e.g., World Health Organization (WHO) has released good practice statements for particle number (PN) and black carbon (BC) concentrations (2021). In this study, a characterization of urban wintertime aerosol was done in three environments: a detached housing area with residential wood combustion, traffic-influenced streets in a city centre and near an airport. The particle characteristics varied significantly between the locations, resulting different average particle sizes causing lung deposited surface area (LDSA). Near the airport, departing planes had a major contribution on PN, and most particles were smaller than 10 nm, similarly as in the city centre. The high hourly mean PN (>20 000 1/cm3) stated in the WHO's good practices was clearly exceeded near the airport and in the city centre, even though traffic rates were reduced due to a SARS-CoV-2-related partial lockdown. In the residential area, wood combustion increased both BC and PM2.5, but also PN of sub 10 and 23 nm particles. The high concentrations of sub 10 nm particles in all the locations show the importance of the chosen lower size limit of PN measurement, e.g., WHO states that the lower limit should be 10 nm or smaller. Furthermore, due to ultrafine particle emissions, LDSA per unit PM2.5 was 1.4 and 2.4 times higher near the airport than in the city centre and the residential area, respectively, indicating that health effects of PM2.5 depend on urban environment as well as conditions, and emphasizing the importance of PN monitoring in terms of health effects related to local pollution sources.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , SARS-CoV-2 , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Contaminación del Aire/análisis , Tamaño de la Partícula , Pulmón/química , Hollín , Emisiones de Vehículos/análisisRESUMEN
Shipping is the main source of anthropogenic particle emissions in large areas of the globe, influencing climate, air quality, and human health in open seas and coast lines. Here, we determined, by laboratory and on-board measurements of ship engine exhaust, fuel-specific particle number (PN) emissions for different fuels and desulfurization applied in shipping. The emission factors were compared to ship exhaust plume observations and, furthermore, exploited in the assessment of global PN emissions from shipping, utilizing the STEAM ship emission model. The results indicate that most particles in the fresh ship engine exhaust are in ultrafine particle size range. Shipping PN emissions are localized, especially close to coastal lines, but significant emissions also exist on open seas and oceans. The global annual PN produced by marine shipping was 1.2 × 1028 (±0.34 × 1028) particles in 2016, thus being of the same magnitude with total anthropogenic PN emissions in continental areas. The reduction potential of PN from shipping strongly depends on the adopted technology mix, and except wide adoption of natural gas or scrubbers, no significant decrease in global PN is expected if heavy fuel oil is mainly replaced by low sulfur residual fuels. The results imply that shipping remains as a significant source of anthropogenic PN emissions that should be considered in future climate and health impact models.
Asunto(s)
Contaminantes Atmosféricos , Navíos , Contaminantes Atmosféricos/análisis , Humanos , Océanos y Mares , Material Particulado/análisis , Azufre/análisis , Emisiones de Vehículos/análisisRESUMEN
In densely populated areas, traffic is a significant source of atmospheric aerosol particles. Owing to their small size and complicated chemical and physical characteristics, atmospheric particles resulting from traffic emissions pose a significant risk to human health and also contribute to anthropogenic forcing of climate. Previous research has established that vehicles directly emit primary aerosol particles and also contribute to secondary aerosol particle formation by emitting aerosol precursors. Here, we extend the urban atmospheric aerosol characterization to cover nanocluster aerosol (NCA) particles and show that a major fraction of particles emitted by road transportation are in a previously unmeasured size range of 1.3-3.0 nm. For instance, in a semiurban roadside environment, the NCA represented 20-54% of the total particle concentration in ambient air. The observed NCA concentrations varied significantly depending on the traffic rate and wind direction. The emission factors of NCA for traffic were 2.4·1015 (kgfuel)-1 in a roadside environment, 2.6·1015 (kgfuel)-1 in a street canyon, and 2.9·1015 (kgfuel)-1 in an on-road study throughout Europe. Interestingly, these emissions were not associated with all vehicles. In engine laboratory experiments, the emission factor of exhaust NCA varied from a relatively low value of 1.6·1012 (kgfuel)-1 to a high value of 4.3·1015 (kgfuel)-1 These NCA emissions directly affect particle concentrations and human exposure to nanosized aerosol in urban areas, and potentially may act as nanosized condensation nuclei for the condensation of atmospheric low-volatile organic compounds.
RESUMEN
Particle emissions and secondary aerosol formation from internal combustion engines deteriorate air quality and significantly affect human wellbeing and health. Both the direct particle emissions and the emissions of compounds contributing to secondary aerosol formation depend on choices made in selecting fuels, engine technologies, and exhaust aftertreatment (EAT). Here we study how catalytic EATs, particle filtration, and fuel choices affect these emissions concerning heavy-duty diesel engine. We observed that the most advanced EAT decreased the emissions of fresh exhaust particle mass as much as 98% (from 44.7 to 0.73 mg/kWh) and the formation of aged exhaust particle mass â¼100% (from 106.2 to â¼0 mg/kWh). The composition of emitted particles depended significantly on the EAT and oxidative aging. While black carbon typically dominated the composition of fresh exhaust particles, aged particles contained more sulfates and organics. The fuel choices had minor effects on the secondary aerosol formation, implicating that, in diesel engines, either the lubricant is a significant source of secondary aerosol precursors or the precursors are formed in the combustion process. Results indicate that the utilization of EAT in diesel engines would produce benefits with respect to exhaust burden on air quality, and thus their utilization should be promoted especially in geographical areas suffering from poor air quality.
Asunto(s)
Contaminación del Aire , Emisiones de Vehículos , Aerosoles , Catálisis , Gasolina , Humanos , HollínRESUMEN
Exhaust emissions of 23 individual city buses at Euro III, Euro IV and EEV (Enhanced Environmentally Friendly Vehicle) emission levels were measured by the chasing method under real-world conditions at a depot area and on the normal route of bus line 24 in Helsinki. The buses represented different technologies from the viewpoint of engines, exhaust after-treatment systems (ATS) and fuels. Some of the EEV buses were fueled by diesel, diesel-electric, ethanol (RED95) and compressed natural gas (CNG). At the depot area the emission factors were in the range of 0.3-21 × 10(14) # (kg fuel)(-1), 6-40 g (kg fuel)(-1), 0.004-0.88 g (kg fuel)(-1), 0.004-0.56 g (kg fuel)(-1), 0.01-1.2 g (kg fuel)(-1), for particle number (EFN), nitrogen oxides (EFNOx), black carbon (EFBC), organics (EFOrg), and particle mass (EFPM1), respectively. The highest particulate emissions were observed from the Euro III and Euro IV buses and the lowest from the ethanol and CNG-fueled buses, which emitted BC only during acceleration. The organics emitted from the CNG-fueled buses were clearly less oxidized compared to the other bus types. The bus line experiments showed that lowest emissions were obtained from the ethanol-fueled buses whereas large variation existed between individual buses of the same type indicating that the operating conditions by drivers had large effect on the emissions.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Vehículos a Motor , Emisiones de Vehículos/análisis , Ciudades , Finlandia , Peso MolecularAsunto(s)
Contaminación del Aire , Huella de Carbono , Aclimatación , Carbono , Calentamiento Global , Efecto InvernaderoRESUMEN
Vehicular emissions deteriorate air quality in urban areas notably. The aim of this study was to conduct an in-depth characterization of gaseous and particle emissions, and their potential to form secondary aerosol emissions, of the cars meeting the most recent emission Euro 6d standards, and to investigate the impact of fuel as well as engine and aftertreatment technologies on pollutants at warm and cold ambient temperatures. Studied vehicles were a diesel car with a diesel particulate filter (DPF), two gasoline cars (with and without a gasoline particulate filter (GPF)), and a car using compressed natural gas (CNG). The impact of fuel aromatic content was examined for the diesel car and the gasoline car without the GPF. The results showed that the utilization of exhaust particulate filter was important both in diesel and gasoline cars. The gasoline car without the GPF emitted relatively high concentrations of particles compared to the other technologies but the implementation of the GPF decreased particle emissions, and the potential to form secondary aerosols in atmospheric processes. The diesel car equipped with the DPF emitted low particle number concentrations except during the DPF regeneration events. Aromatic-free gasoline and diesel fuel efficiently reduced exhaust particles. Since the renewal of vehicle fleet is a relatively slow process, changing the fuel composition can be seen as a faster way to affect traffic emissions.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Gasolina , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Automóviles , Polvo , Aerosoles , Vehículos a Motor , Material Particulado/análisisRESUMEN
Brown carbon (BrC) is an organic aerosol (OA) component that possesses light-absorbing properties in the UV-Vis spectrum, impacting climate. However, the current understanding of climate repercussions stemming from BrC emissions remains insufficient due to a lack of comprehensive knowledge regarding its chemical makeup, light-absorption, and the role of atmospheric aging in shaping BrC properties. This study investigates BrC in PM1 (particulate matter <1µm) during winter in Helsinki, Finland, in a street canyon and a residential area with wood combustion. The aim was to ascertain BrC sources, chemical composition, and contribution to UV-Vis light absorption. The study utilized a seven-wavelength aethalometer (AE33) to measure black carbon (BC) and BrC light absorptions, and a soot particle aerosol mass spectrometer (SP-AMS) to determine OA composition. An OA source apportionment using positive matrix factorization followed by a multiple regression analysis between BrC absorption and each factor was performed to determine the mass absorption coefficients of BrC (MACBrC) and light absorption contributions of distinct sources across 370-660 nm wavelengths. The BrC UV-Vis absorption relative to the one of BC was higher at 370 nm, with a median contribution of 20.1 % in the residential area and 18.2 % at the traffic site. Residential BrC absorption showed sporadic peaks, while street canyon absorption was lower but consistent. MACBrC was higher for biomass burning organic aerosol but still significant for long-range transported (LRT) and traffic-related aerosols. Hydrocarbon-like organic aerosol exhibited higher MACBrC at 470 nm than at 370 nm. Combined with particulate mass concentrations, biomass burning and LRT contributed the most to light absorption. Uncertainties regarding MACBrC were evaluated. The chemical composition analysis revealed stronger correlations between BrC absorption and SP-AMS-measured ions, especially in residential areas and for polycyclic aromatic hydrocarbons and oxidized aromatics. The study emphasizes the importance of anthropogenic sources in BrC light absorption.
RESUMEN
Heavy fuel oil (HFO) is a commonly used fuel in industrial heating and power generation and for large marine vessels. In this study, the fine particle emissions of a 47 MW oil-fired boiler were studied at 30 MW power and with three different fuels. The studied fuels were HFO, water emulsion of HFO, and water emulsion of HFO mixed with light fuel oil (LFO). With all the fuels, the boiler emitted considerable amounts of particles smaller than 200 nm in diameter. Further, these small particles were quite hygroscopic even as fresh and, in the case of HFO+LFO emulsion, the hygroscopic growth of the particles was dependent on particle size. The use of emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42 nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and air quality.
Asunto(s)
Contaminantes Atmosféricos/análisis , Aceites Combustibles , Calefacción , Tamaño de la Partícula , Material Particulado/química , Humectabilidad , Material Particulado/análisisRESUMEN
Recent recommendations given by WHO include systematic measurements of ambient particle number concentration and black carbon (BC) concentrations. In India and several other highly polluted areas, the air quality problems are severe and the need for air quality related information is urgent. This study focuses on particle number emissions and BC emissions of passenger cars that are technologically relevant from an Indian perspective. Particle number and BC were investigated under real-world conditions for driving cycles typical for Indian urban environments. Two mobile laboratories and advanced aerosol and trace gas instrumentation were utilized. Our study shows that passenger cars without exhaust particle filtration can emit in real-world conditions large number of particles, and especially at deceleration a significant fraction of particle number can be even in 1.5-10 nm particle sizes. The mass concentration of exhaust plume particles was dominated by BC that was emitted especially at acceleration conditions. However, exhaust particles contained also organic compounds, indicating the roles of engine oil and fuel in exhaust particle formation. In general, our study was motivated by serious Indian air quality problems, by the recognized lack of emission information related to Indian traffic, and by the recent WHO air quality guidance; our results emphasize the importance of monitoring particle number concentrations and BC also in Indian urban areas and especially in traffic environments where people can be significantly exposed to fresh exhaust emissions.
Asunto(s)
Contaminantes Atmosféricos , Gasolina , Humanos , Gasolina/análisis , Contaminantes Atmosféricos/análisis , Automóviles , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Emisiones de Vehículos/análisis , Tamaño de la Partícula , Hollín/análisisRESUMEN
The differences in the traffic fuels have been shown to affect exhaust emissions and their toxicity. Especially, the aromatic content of diesel fuel is an important factor considering the emissions, notably particulate matter (PM) concentrations. The ultra-fine particles (UFP, particles with a diameter of <100 nm) are important components of engine emissions and connected to various health effects, such as pulmonary and systematic inflammation, and cardiovascular disorders. Studying the toxicity of the UFPs and how different fuel options can be used for mitigating the emissions and toxicity is crucial. In the present study, emissions from a heavy-duty diesel engine were used to assess the exhaust emission toxicity with a thermophoresis-based in vitro air-liquid interface (ALI) exposure system. The aim of the study was to evaluate the toxicity of engine exhaust and the potential effect of 20 % aromatic fossil diesel and 0 % aromatic renewable diesel fuel on emission toxicity. The results of the present study show that the aromatic content of the fuel increases emission toxicity, which was seen as an increase in genotoxicity, distinct inflammatory responses, and alterations in the cell cycle. The increase in genotoxicity was most likely due to the PM phase of the exhaust, as the exposures with high-efficiency particulate absorbing (HEPA)-filtered exhaust resulted in a negligible increase in genotoxicity. However, the solely gaseous exposures still elicited immunological responses. Overall, the present study shows that decreasing the aromatic content of the fuels could be a significant measure in mitigating traffic exhaust toxicity.
Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Gasolina/toxicidad , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , GasesRESUMEN
Recent studies indicate that monitoring only fine particulate matter (PM2.5) may not be enough to understand and tackle the health risk caused by particulate pollution. Health effects per unit PM2.5 seem to increase in countries with low PM2.5, but also near local pollution sources (e.g., traffic) within cities. The aim of this study is to understand the differences in the characteristics of lung-depositing particles in different geographical regions and urban environments. Particle lung deposited surface area (LDSAal) concentrations and size distributions, along with PM2.5, were compared with ambient measurement data from Finland, Germany, Czechia, Chile, and India, covering traffic sites, residential areas, airports, shipping, and industrial sites. In Finland (low PM2.5), LDSAal size distributions depended significantly on the urban environment and were mainly attributable to ultrafine particles (<100 nm). In Central Europe (moderate PM2.5), LDSAal was also dependent on the urban environment, but furthermore heavily influenced by the regional aerosol. In Chile and India (high PM2.5), LDSAal was mostly contributed by the regional aerosol despite that the measurements were done at busy traffic sites. The results indicate that the characteristics of lung-depositing particles vary significantly both within cities and between geographical regions. In addition, ratio between LDSAal and PM2.5 depended notably on the environment and the country, suggesting that LDSAal exposure per unit PM2.5 may be multiple times higher in areas having low PM2.5 compared to areas with continuously high PM2.5. These findings may partly explain why PM2.5 seems more toxic near local pollution sources and in areas with low PM2.5. Furthermore, performance of a typical sensor based LDSAal measurement is discussed and a new LDSAal2.5 notation indicating deposition region and particle size range is introduced. Overall, the study emphasizes the need for country-specific emission mitigation strategies, and the potential of LDSAal concentration as a health-relevant pollution metric.
RESUMEN
SOx Emissions Control Areas (SECAs) have been established to reduce harmful effects of atmospheric sulfur. Typical technological changes for ships to conform with these regulations have included the combustion of low-sulfur fuels or installment of SOx scrubbers. This paper presents experimental findings from high-end real-time measurements of gaseous and particulate pollutants onboard a Roll-on/Roll-off Passenger ship sailing inside a SECA equipped with a diesel oxidation catalyst (DOC) and a scrubber as the exhaust aftertreatment. The ship operates between two ports and switched off the SOx scrubbing when approaching one of the ports and used low-sulfur fuel instead. Measurement results showed that the scrubber effectively reduced SO2 concentrations with over 99% rate. In terms of fuel, the engine-out PM was higher for heavy fuel oil than for marine gas oil. During open sea cruising (65% load) the major chemical components in PM having emission factor of 1.7 g kgfuel-1 were sulfate (66%) and organics (30%) whereas the contribution of black carbon (BC) in PM was low (â¼4%). Decreased engine load on the other hand increased exhaust concentrations of BC by a factor exceeding four. As a novel finding, the secondary aerosol formation potential of the emitted exhaust measured with an oxidation flow reactor and an aerosol mass spectrometer was found negligible. Thus, it seems that either DOC, scrubber, or their combination is efficient in eliminating SOA precursors. Overall, results indicate that in addition to targeting sulfur and NOx emissions from shipping, future work should focus on mitigating harmful particle emissions.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles , Contaminantes Atmosféricos/análisis , Gasolina/análisis , Material Particulado/análisis , Navíos , Emisiones de Vehículos/análisisRESUMEN
Black carbon (BC) is a component of ambient particulate matter which originates from incomplete combustion emissions. BC is regarded as an important short-lived climate forcer, and a significant public health hazard. These two concerns have made BC a focus in aerosol science. Even though, the toxicity of BC particles is well recognized, the mechanism of toxicity for BC as a part of the total gas and particle emission mixture from combustion is still largely unknown and studies concerning it are scarce. In the present study, using a novel thermophoresis-based air-liquid interface (ALI) in vitro exposure system, we studied the toxicity of combustion-generated aerosols containing high levels of BC, diluted to atmospheric levels (1 to 10 µg/m3). Applying multiple different aerosol treatments, we simulated different sources and atmospheric aging processes, and utilizing several toxicological endpoints, we thoroughly examined emission toxicity. Our results revealed that an organic coating on the BC particles increased the toxicity, which was seen as larger genotoxicity and immunosuppression. Furthermore, aging of the aerosol also increased its toxicity. A deeper statistical analysis of the results supported our initial conclusions and additionally revealed that toxicity increased with decreasing particle size. These findings regarding BC toxicity can be applied to support policies and technologies to reduce the most hazardous compositions of BC emissions. Additionally, our study showed that the thermophoretic ALI system is both a suitable and useful tool for toxicological studies of emission aerosols.
Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Carbono/análisis , Monitoreo del Ambiente/métodos , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/toxicidad , Hollín/análisis , Hollín/toxicidadRESUMEN
The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer's disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Encéfalo , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/toxicidadRESUMEN
Exhaust emissions from traffic significantly affect urban air quality. In this study, in-traffic emissions of diesel-fueled city buses meeting enhanced environmentally friendly vehicle (EEV) and Euro VI emission limits and the effects of retrofitting of EEV buses were studied on-road by chasing the buses with a mobile laboratory in the Helsinki region, Finland. The average emission factors of particle number (PN), particle mass (PM1) and black carbon mass (BC) were 0.86·1015 1/kgfuel, 0.20â¯g/kgfuel and 0.10â¯g/kgfuel, respectively, for EEV buses. For Euro VI buses, the emissions were below 0.5·1015 1/kgfuel (PN), 0.07â¯g/kgfuel (PM1) and 0.02â¯g/kgfuel (BC), and the exhaust plume concentrations of these pollutants were close to the background concentrations. The emission factors of PM1 and BC of retrofitted EEV buses were at the level of Euro VI buses, but their particle number emissions varied significantly. On average, the EEV buses were observed to emit the largest amounts of nanocluster aerosol (NCA) (i.e., the particles with size between 1.3 and 3â¯nm). High NCA emissions were linked with high PN emissions. In general, results demonstrate that advanced exhaust aftertreatment systems reduce emissions of larger soot particles but not small nucleation mode particles in all cases.
Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Vehículos a Motor , Material Particulado/análisis , Emisiones de Vehículos/análisis , Aerosoles , Contaminación del Aire/análisis , Ciudades , Finlandia , Gasolina , Tamaño de la PartículaRESUMEN
Emissions from passenger cars are one of major sources that deteriorate urban air quality. This study presents characterization of real-drive emissions from three Euro 6 emission level passenger cars (two gasoline and one diesel) in terms of fresh particles and secondary aerosol formation. The gasoline vehicles were also characterized by chassis dynamometer studies. In the real-drive study, the particle number emissions during regular driving were 1.1-12.7 times greater than observed in the laboratory tests (4.8 times greater on average), which may be caused by more effective nucleation process when diluted by real polluted and humid ambient air. However, the emission factors measured in laboratory were still much higher than the regulatory value of 6â¯×â¯1011 particles km-1. The higher emission factors measured here result probably from the fact that the regulatory limit considers only non-volatile particles larger than 23â¯nm, whereas here, all particles (also volatile) larger than 3â¯nm were measured. Secondary aerosol formation potential was the highest after a vehicle cold start when most of the secondary mass was organics. After the cold start, the relative contributions of ammonium, sulfate and nitrate increased. Using a novel approach to study secondary aerosol formation under real-drive conditions with the chase method resulted mostly in emission factors below detection limit, which was not in disagreement with the laboratory findings.
Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Vehículos a Motor , Emisiones de Vehículos/análisis , Contaminación del Aire , Conducción de Automóvil , Gasolina/análisis , Laboratorios , Óxidos de Nitrógeno/análisisRESUMEN
Special episodes of long-range transported particulate (PM) air pollution were investigated in a one-month field campaign at an urban background site in Helsinki, Finland. A total of nine size-segregated PM samplings of 3- or 4-day duration were made between August 23 and September 23, 2002. During this warm and unusually dry period there were two (labelled P2 and P5) sampling periods when the PM2.5 mass concentration increased remarkably. According to the hourly-measured PM data and backward air mass trajectories, P2 (Aug 23-26) represented a single, 64-h episode of long-range transported aerosol, whereas P5 (Sept 5-9) was a mixture of two 16- and 14-h episodes and usual seasonal air quality. The large chemical data set, based on analyses made by ion chromatography, inductively coupled plasma mass spectrometry, X-ray fluorescence analysis and smoke stain reflectometry, demonstrated that the PM2.5 mass concentrations of biomass signatures (i.e. levoglucosan, oxalate and potassium) and of some other compounds associated with biomass combustion (succinate and malonate) increased remarkably in P2. Crustal elements (Fe, Al, Ca and Si) and unidentified matter, presumably consisting to a large extent of organic material, were also increased in P2. The PM2.5 composition in P5 was different from that in P2, as the inorganic secondary aerosols (NO3-, SO4(2-), NH4+) and many metals reached their highest concentration in this period. The water-soluble fraction of potassium, lead and manganese increased in both P2 and P5. Mass size distributions (0.035-10 microm) showed that a large accumulation mode mainly caused the episodically increased PM2.5 concentrations. An interesting observation was that the episodes had no obvious impact on the Aitken mode. Finally, the strongly increased concentrations of biomass signatures in accumulation mode proved that the episode in P2 was due to long-range transported biomass combustion aerosol.
Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Incendios , Glucosa/análogos & derivados , Humo/análisis , Aerosoles/análisis , Movimientos del Aire , Finlandia , Glucosa/análisis , Microscopía Electrónica de Rastreo , Oxalatos , Tamaño de la Partícula , PotasioRESUMEN
A series of smoke plumes was detected in Helsinki, Finland, during a one-month-lasting period in August 2006. The smoke plumes originated from wildfires close to Finland, and they were short-term and had a high particulate matter (PM) concentration. Physical and chemical properties of fine particles in those smokes were characterised by a wide range of real-time measurements that enabled the examination of individual plume events. Concurrently PM(1) filter samples were collected and analysed off-line. Satellite observations employing MODIS sensor on board of NASA EOS Terra satellite with the dispersion model SILAM and the Fire Assimilation System were used for evaluation of the emission fluxes from wildfires. The model predicted well the timing of the plumes but the predicted PM concentrations differed from the observed. The measurements showed that the major growth in PM concentration was caused by submicrometer particles consisting mainly of particulate organic matter (POM). POM had not totally oxidised during the transport based on the low WSOC-to-OC ratio. The fresh plumes were compared to another major smoke episode that was observed in Helsinki during April-May 2006. The duration and the source areas of the two episode periods differed. The episode in April-May was a period of nearly constantly upraised level of long-range transported PM and it was composed of aged particles when arriving in Helsinki. The two episodes had differences also in the chemical composition of PM. The mass concentrations of biomass burning tracers (levoglucosan, potassium, and oxalate) increased during both the episodes but different concentration levels of elemental carbon and potassium indicated that the episodes differed in the form of burning as well as in the burning material. In spring dry crop residue and hay from the previous season were burnt whereas in August smokes from smouldering and incomplete burning of fresh vegetation were detected.