Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Intervalo de año de publicación
1.
Clin Oral Investig ; 28(4): 238, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568249

RESUMEN

OBJECTIVES: This narrative review addresses relevant points about Chapare virus (CHAV) entry in oral cells, CHAV transmission, and preventive strategies in dental clinical settings. It is critical in dentistry due to the frequent presence of gingival hemorrhage occurred in CHAV-infected patients. MATERIALS AND METHODS: Studies related to CHAV were searched in MEDLINE/PubMed, Scopus, EMBASE, and Web-of-Science databases without language restriction or year of publication. RESULTS: Recently, the PAHO/WHO and CDC indicate a presence of human-to-human transmission of CHAV associated with direct contact with saliva, blood, or urine, and also through droplets or aerosols created in healthcare procedures. CHAV was detected in human oropharyngeal saliva and gingival bleeding was confirmed in all cases of CHAV hemorrhagic fever, including evidence of nosocomial CHAV transmission in healthcare workers. We revisited the human transferrin receptor 1 (TfR1) expression in oral, nasal, and salivary glands tissues, as well as, we firstly identified the critical residues in the pre-glycoprotein (GP) complex of CHAV that interacts with human TfR1 using cutting-edge in silico bioinformatics platforms associated with molecular dynamic analysis. CONCLUSIONS: In this multidisciplinary view, we also point out critical elements to provide perspectives on the preventive strategies for dentists and frontline healthcare workers against CHAV, and in the implementation of salivary diagnostic platforms for virus detection, which can be critical to an urgent plan to prevent human-to-human transmission based on current evidence. CLINICAL RELEVANCE: The preventive strategies in dental clinical settings are pivotal due to the aerosol-generating procedures in dentistry with infected patients or suspected cases of CHAV infection.


Asunto(s)
Biología Computacional , Fiebre Hemorrágica Americana , Humanos , Personal de Salud , Odontología
2.
Cell Mol Neurobiol ; 43(8): 4231-4244, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742326

RESUMEN

Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/µL, 1 µL) followed by fMLP (1 mg/mL, 1 µL) or vehicle (VEH, saline 0.9%, 1 µL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).


Asunto(s)
Epilepsia , Estado Epiléptico , Ratas , Masculino , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , N-Formilmetionina Leucil-Fenilalanina/farmacología , N-Formilmetionina Leucil-Fenilalanina/uso terapéutico , Pilocarpina/uso terapéutico , Ratas Wistar , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/complicaciones , Convulsiones/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Péptidos/uso terapéutico
3.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762664

RESUMEN

In this narrative review, we aim to point out the close relationship between mpox virus (MPXV) infection and the role of saliva as a diagnostic tool for mpox, considering the current molecular approach and in the perspective of OMICs application. The MPXV uses the host cell's rough endoplasmic reticulum, ribosomes, and cytoplasmic proteins to replicate its genome and synthesize virions for cellular exit. The presence of oral mucosa lesions associated with mpox infection is one of the first signs of infection; however, current diagnostic tools find it difficult to detect the virus before the rashes begin. MPXV transmission occurs through direct contact with an infected lesion and infected body fluids, including saliva, presenting a potential use of this fluid for diagnostic purposes. Currently available diagnostic tests for MPXV detection are performed either by real-time quantitative PCR (RT-qPCR) or ELISA, which presents several limitations since they are invasive tests. Despite current clinical trials with restricted sample size, MPXV DNA was detected in saliva with a sensitivity of 85%-100%. In this context, the application of transcriptomics, metabolomics, lipidomics, or proteomics analyses coupled with saliva can identify novel disease biomarkers. Thus, it is important to note that the identification and quantification of salivary DNA, RNA, lipid, protein, and metabolite can provide novel non-invasive biomarkers through the use of OMICs platforms aiding in the early detection and diagnosis of MPXV infection. Untargeted mass spectrometry (MS)-based proteomics reveals that some proteins also expressed in saliva were detected with greater expression differences in blood plasma when comparing mpox patients and healthy subjects, suggesting a promising alternative to be applied in screening or diagnostic platforms for mpox salivary diagnostics coupled to OMICs.


Asunto(s)
Líquidos Corporales , Enfermedades Transmisibles , Mpox , Humanos , Patología Bucal , Saliva
4.
BMC Vet Res ; 16(1): 298, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814559

RESUMEN

BACKGROUND: Dogs' saliva is a complex mixture of inorganic and organic constituents, rich in proteins. Therefore, knowing the saliva composition of these animals is extremely important to identify the presence of proteins that may be involved in physiological and pathological mechanisms of their oral cavity. The present study aimed to characterize the proteomic profile of saliva from dogs with and without dental calculus. RESULTS: Saliva samples were collected from 20 dogs. Before the collection, a visual clinical examination was performed and 8 subjects (40%) did not present any signs of dental calculus, while 12 (60%) presented dental calculus. After saliva collection, the samples were submitted to protein quantification (mBCA), and then they were prepared for analysis by nLC-ESI-MS/MS. A total of 658 unique proteins were identified, of which 225 were specific to dogs without dental calculus, 300 were specific to dogs with dental calculus, and 133 were common to all subjects. These proteins presented functions including transportation, immune response, structural, enzymatic regulation, signal transduction, transcription, metabolism, and some proteins perform functions as yet unknown. Several salivary proteins in dogs with dental calculus differed from those found in the group without dental calculus. Among the abundant proteins detected in periodontal affected cases, can be highlighting calcium-sensing receptor and transforming growth factor beta. Enrichment analysis reveled the presence of Rho GTPases signaling pathway. CONCLUSIONS: This research identified salivary proteins, that should be further investigated as potencial biomarkers of chronic periodontits with dental calculus formation in dogs.


Asunto(s)
Cálculos Dentales/veterinaria , Proteoma/análisis , Proteínas y Péptidos Salivales/análisis , Animales , Enfermedades de los Perros/metabolismo , Perros , Femenino , Masculino , Periodontitis/veterinaria
6.
Epilepsy Behav ; 61: 258-268, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27429292

RESUMEN

Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, starting from secondary functional disorders due to several insults, including self-sustaining continuous seizures identified as status epilepticus (SE). Although hypoglycemia has been associated with SE, the effect of inhibition of the Na(+)/glucose cotransporters (SGLTs) on hippocampus during SE is still unknown. Here we evaluated the functional role of SGLT in the pattern of limbic seizures and neurodegeneration process after pilocarpine (PILO)-induced SE. Vehicle (VEH, 1µL) or phlorizin, a specific SGLT inhibitor (PZN, 1µL, 50µg/µL), was administered in the hippocampus of rats 30min before PILO (VEH+PILO or PZN+PILO, respectively). The limbic seizures were classified using the Racine's scale, and the amount of wet dog shakes (WDS) was quantified before and during SE. Neurodegeneration process was evaluated by Fluoro-Jade C (FJ-C), and FJ-C-positive neurons (FJ-C+) were counted 24h and 15days after SE. The PZN-treated rats showed higher (p<0.05) number of WDS when compared with VEH+PILO. There was no difference in seizure severity between PZN+PILO and VEH+PILO groups. However, the pattern of limbic seizures significantly changed in PZN+PILO. Indeed, the class 5 seizures repeated themselves more times (p<0.05) than the other classes in the PZN group at 50min after SE induction. The PZN+PILO animals had a higher (p<0.05) number of FJ-C+ cells in the dentate gyrus (DG), hilus, and CA3 and CA1 of hippocampus, when compared with VEH+PILO. The PZN+PILO animals had a decreased number (p<0.05) of FJ-C+ cells in CA1 compared with VEH+PILO 15days after SE induction. Taken together, our data suggest that SGLT inhibition with PZN increased the severity of limbic seizures during SE and increased neurodegeneration in hippocampus 24h after SE, suggesting that SGLT1 and SGLT2 could participate in the modulation of earlier stages of epileptogenic processes.


Asunto(s)
Hipocampo/efectos de los fármacos , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Florizina/farmacología , Convulsiones/patología , Proteínas de Transporte de Sodio-Glucosa/antagonistas & inhibidores , Estado Epiléptico/patología , Animales , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Pilocarpina , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo
8.
Mol Neurobiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965171

RESUMEN

Demyelination is among the most conspicuous neurological sequelae of SARS-CoV-2 infection (COVID-19) in both the central (CNS) and peripheral (PNS) nervous systems. Several hypotheses have been proposed to explain the mechanisms underlying demyelination in COVID-19. However, none have considered the SARS-CoV-2's effects on the renin-angiotensin-aldosterone system (RAAS). Therefore, our objective in this review is to evaluate how RAAS imbalance, caused by direct and indirect effects of SARS-CoV-2 infection, could contribute to myelin loss in the PNS and CNS. In the PNS, we propose that demyelination transpires from two significant changes induced by SARS-CoV-2 infection, which include upregulation of ADAM-17 and induction of lymphopenia. Whereas, in the CNS, demyelination could result from RAAS imbalance triggering two alterations: (1) a decrease in angiotensin type II receptor (AT2R) activity, responsible for restraining defense cells' action on myelin; (2) upregulation of ADAM-17 activity, leading to impaired maturation of oligodendrocytes and myelin formation. Thus, we hypothesize that increased ADAM-17 activity and decreased AT2R activity play roles in SARS-CoV-2 infection-mediated demyelination in the CNS.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124599, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38865886

RESUMEN

The Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) has been applied to determine salivary biomarkers with high sensitivity and cost-effectiveness. Our study aimed to test the hypothesis that the spectral profile of saliva demonstrates distinct vibrational modes corresponding to different exercise protocols, thereby facilitating exercise monitoring. Saliva samples were collected from trained male subjects at three intervals: pre-exercise, post-exercise, and 3 h post-exercise. The protocols included acute sessions of continuous exercise (CE), high-intensity interval exercise (HIIE), and resistance exercise (RE). ATR-FTIR analysis revealed that salivary biochemical components changed uniquely with each exercise protocol. Specific spectral vibrational modes were identified as potential biomarkers for each exercise type. Notably, the salivary spectrum pattern of CE closely resembled that of HIIE, whereas RE showed minor alterations. Furthermore, we attempted to apply an algorithm capable of distinguishing the spectral range that differentiates the exercise modalities. This pioneering study is the first to compare changes in saliva spectra following different exercise protocols and to suggest spectrum peaks of vibrational modes as markers for specific types of exercises. We emphasize that the spectral wavenumbers identified by FTIR could serve as practical markers in distinguishing between different exercise modalities, with sensitivity, specificity, and accuracy correlating with the metabolic changes induced by exercise. Therefore, this study contributes a panel of ATR-FTIR spectral wavenumbers that can be referenced as a spectral signature capable of distinguishing between resistance and endurance exercises.


Asunto(s)
Ejercicio Físico , Saliva , Humanos , Saliva/química , Saliva/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Masculino , Ejercicio Físico/fisiología , Adulto Joven , Adulto , Biomarcadores/análisis
10.
Photodiagnosis Photodyn Ther ; 42: 103633, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37245681

RESUMEN

Early cancer diagnosis plays a critical role in improving treatment outcomes and increasing survival rates for certain cancers. NIR spectroscopy offers a rapid and cost-effective approach to evaluate the optical properties of tissues at the microvessel level and provides valuable molecular insights. The integration of NIR spectroscopy with advanced data-driven algorithms in portable instruments has made it a cutting-edge technology for medical applications. NIR spectroscopy is a simple, non-invasive and affordable analytical tool that complements expensive imaging modalities such as functional magnetic resonance imaging, positron emission tomography and computed tomography. By examining tissue absorption, scattering, and concentrations of oxygen, water, and lipids, NIR spectroscopy can reveal inherent differences between tumor and normal tissue, often revealing specific patterns that help stratify disease. In addition, the ability of NIR spectroscopy to assess tumor blood flow, oxygenation, and oxygen metabolism provides a key paradigm for its application in cancer diagnosis. This review evaluates the effectiveness of NIR spectroscopy in the detection and characterization of disease, particularly in cancer, with or without the incorporation of chemometrics and machine learning algorithms. The report highlights the potential of NIR spectroscopy technology to significantly improve discrimination between benign and malignant tumors and accurately predict treatment outcomes. In addition, as more medical applications are studied in large patient cohorts, consistent advances in clinical implementation can be expected, making NIR spectroscopy a valuable adjunct technology for cancer therapy management. Ultimately, the integration of NIR spectroscopy into cancer diagnostics promises to improve prognosis by providing critical new insights into cancer patterns and physiology.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Espectroscopía Infrarroja Corta/métodos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes , Neoplasias/diagnóstico por imagen , Oxígeno
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122259, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36584643

RESUMEN

The development of novel platforms for non-invasive continuous glucose monitoring applied in the screening and monitoring of diabetes is crucial to improve diabetes surveillance systems. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy of urine can be an alternative as a sustainable, label-free, fast, non-invasive, and highly sensitive analysis to detect changes in urine promoted by diabetes and insulin treatment. In this study, we used ATR-FTIR to evaluate the urinary components of non-diabetic (ND), diabetic (D), and diabetic insulin-treated (D + I) rats. As expected, insulin treatment was capable to revert changes in glycemia, 24-h urine collection volume, urine creatinine, urea, and glucose excretion promoted by diabetes. Several differences in the urine spectra of ND, D, and D + I were observed, with urea, creatinine, and glucose analytes being related to these changes. Principal components analysis (PCA) scores plots allowed for the discrimination of ND and D + I from D with an accuracy of âˆ¼ 99 %. The PCA loadings associated with PC1 confirmed the importance of urea and glucose vibrational modes for this discrimination. Univariate analysis of second derivative spectra showed a high correlation (r: 0.865, p < 0.0001) between the height of 1074 cm-1 vibrational mode with urinary glucose concentration. In order to estimate the amount of glucose present in the infrared spectra from urine, multivariate curve resolution-alternating least square (MCR-ALS) was applied and a higher predicted concentration of glucose in the urine was observed with a correlation of 78.9 % compared to urinary glucose concentration assessed using enzyme assays. In summary, ATR-FTIR combined with univariate and multivariate chemometric analyses provides an innovative, non-invasive, and sustainable approach to diabetes surveillance.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Insulinas , Ratas , Animales , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Creatinina , Glucemia , Glucosa/análisis , Urea
12.
Neurosci Insights ; 18: 26331055231151926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756280

RESUMEN

Hypertension is considered one of the most critical risk factors for COVID-19. Evidence suggests that SARS-CoV-2 infection produces intense effects on the cardiovascular system by weakening the wall of large vessels via vasa-vasorum. In this commentary, we propose that SARS-CoV-2 invades carotid and aortic baroreceptors, leading to infection of the nucleus tractus solitari (NTS) and paraventricular hypothalamic nucleus (PVN), and such dysregulation of NTS and PVN following infection causes blood pressure alteration at the central level. We additionally explored the hypothesis that SARS-CoV-2 favors the internalization of membrane ACE2 receptors generating an imbalance of the renin-angiotensin-aldosterone system (RAAS), increasing the activity of angiotensin II (ANG-II), disintegrin, and metalloproteinase 17 domain (ADAM17/TACE), eventually modulating the integration of afferents reaching the NTS from baroreceptors and promoting increased blood pressure. These mechanisms are related to the increased sympathetic activity, which leads to transient or permanent hypertension associated with SARS-CoV-2 invasion, contributing to the high number of deaths by cardiovascular implications.

13.
Diagnostics (Basel) ; 13(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37189497

RESUMEN

The blood diagnosis of diabetes mellitus (DM) is highly accurate; however, it is an invasive, high-cost, and painful procedure. In this context, the combination of ATR-FTIR spectroscopy and machine learning techniques in other biological samples has been used as an alternative tool to develop a non-invasive, fast, inexpensive, and label-free diagnostic or screening platform for several diseases, including DM. In this study, we used the ATR-FTIR tool associated with linear discriminant analysis (LDA) and a support vector machine (SVM) classifier in order to identify changes in salivary components to be used as alternative biomarkers for the diagnosis of type 2 DM. The band area values of 2962 cm-1, 1641 cm-1, and 1073 cm-1 were higher in type 2 diabetic patients than in non-diabetic subjects. The best classification of salivary infrared spectra was by SVM, showing a sensitivity of 93.3% (42/45), specificity of 74% (17/23), and accuracy of 87% between non-diabetic subjects and uncontrolled type 2 DM patients. The SHAP features of infrared spectra indicate the main salivary vibrational modes of lipids and proteins that are responsible for discriminating DM patients. In summary, these data highlight the potential of ATR-FTIR platforms coupled with machine learning as a reagent-free, non-invasive, and highly sensitive tool for screening and monitoring diabetic patients.

14.
Diagnostics (Basel) ; 13(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37189545

RESUMEN

Zika virus (ZIKV) diagnosis is currently performed through an invasive, painful, and costly procedure using molecular biology. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for ZIKV diagnosis is of great relevance. It is critical to prepare a global strategy for the next ZIKV outbreak given its devastating consequences, particularly in pregnant women. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy has been used to discriminate systemic diseases using saliva; however, the salivary diagnostic application in viral diseases is unknown. To test this hypothesis, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with ZIKV (50 µL,105 FFU, n = 7) or vehicle (50 µL, n = 8). Saliva samples were collected on day three (due to the peak of viremia) and the spleen was also harvested. Changes in the salivary spectral profile were analyzed by Student's t test (p < 0.05), multivariate analysis, and the diagnostic capacity by ROC curve. ZIKV infection was confirmed by real-time PCR of the spleen sample. The infrared spectroscopy coupled with univariate analysis suggested the vibrational mode at 1547 cm-1 as a potential candidate to discriminate ZIKV and control salivary samples. Three PCs explained 93.2% of the cumulative variance in PCA analysis and the spectrochemical analysis with LDA achieved an accuracy of 93.3%, with a specificity of 87.5% and sensitivity of 100%. The LDA-SVM analysis showed 100% discrimination between both classes. Our results suggest that ATR-FTIR applied to saliva might have high accuracy in ZIKV diagnosis with potential as a non-invasive and cost-effective diagnostic tool.

15.
Jpn Dent Sci Rev ; 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360001

RESUMEN

Accurate, self-collected, and non-invasive diagnostics are critical to perform mass-screening diagnostic tests for COVID-19. This systematic review with meta-analysis evaluated the accuracy, sensitivity, and specificity of salivary diagnostics for COVID-19 based on SARS-CoV-2 RNA compared with the current reference tests using a nasopharyngeal swab (NPS) and/or oropharyngeal swab (OPS). An electronic search was performed in seven databases to find COVID-19 diagnostic studies simultaneously using saliva and NPS/OPS tests to detect SARS-CoV-2 by RT-PCR. The search resulted in 10,902 records, of which 44 studies were considered eligible. The total sample consisted of 14,043 participants from 21 countries. The accuracy, specificity, and sensitivity for saliva compared with the NPS/OPS was 94.3% (95%CI= 92.1;95.9), 96.4% (95%CI= 96.1;96.7), and 89.2% (95%CI= 85.5;92.0), respectively. Besides, the sensitivity of NPS/OPS was 90.3% (95%CI= 86.4;93.2) and saliva was 86.4% (95%CI= 82.1;89.8) compared to the combination of saliva and NPS/OPS as the gold standard. These findings suggest a similarity in SARS-CoV-2 RNA detection between NPS/OPS swabs and saliva, and the association of both testing approaches as a reference standard can increase by 3.6% the SARS-CoV-2 detection compared with NPS/OPS alone. This study supports saliva as an attractive alternative for diagnostic platforms to provide a non-invasive detection of SARS-CoV-2.

16.
Int J Biol Macromol ; 227: 630-640, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529220

RESUMEN

Zika virus is the etiologic agent of Zika fever, and has been previously associated with cases of microcephaly, drawing the attention of the health authorities worldwide. However, no vaccine or antiviral are currently available. Phospholipases A2 (PLA2) isolated from snake venoms have demonstrated antiviral activity against several viruses. Here we demonstrated the anti-ZIKV activity of bothropstoxins-I and II (BthTX-I and II) isolated from Bothrops jararacussu venom. Vero E6 cells were infected with ZIKVPE243 in the presence of compounds for 72 h, when virus titers were evaluated. BthTX-I and II presented strong dose-dependent inhibition of ZIKV, with a SI of 149.1 and 1.44 × 105, respectively. These toxins mainly inhibited the early stages of the replicative cycle, such as during the entry of ZIKV into host cells, as shown by the potent virucidal effect, suggesting the action of these toxins on the virus particles. Moreover, BthTX-I and II presented significant activity towards post-entry stages of the ZIKV replicative cycle. Molecular docking analyses showed that BthTX-I and II potentially interact with DII and DIII domains from ZIKV Envelope protein. Our findings show that these PLA2s could be used as useful templates for the development of future antiviral candidate drugs against Zika fever.


Asunto(s)
Bothrops , Venenos de Crotálidos , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Antivirales/farmacología , Bothrops/metabolismo , Infección por el Virus Zika/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Venenos de Crotálidos/metabolismo , Anticuerpos
17.
Virus Res ; 324: 199029, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565816

RESUMEN

The Chikungunya virus (CHIKV) causes Chikungunya fever, a disease characterized by symptoms such as arthralgia/polyarthralgia. Currently, there are no antivirals approved against CHIKV, emphasizing the need to develop novel therapies. The imidazonaphthyridine compound (RO8191), an interferon-α (IFN-α) agonist, was reported as a potent inhibitor of HCV. Here RO8191 was investigated for its potential to inhibit CHIKV replication in vitro. RO8191 inhibited CHIKV infection in BHK-21 and Vero-E6 cells with a selectivity index (SI) of 12.3 and 37.3, respectively. Additionally, RO8191 was capable to protect cells against CHIKV infection, inhibit entry by virucidal activity, and strongly impair post-entry steps of viral replication. An effect of RO8191 on CHIKV replication was demonstrated in BHK-21 through type-1 IFN production mechanism and in Vero-E6 cells which has a defective type-1 IFN production, also suggesting a type-1 IFN independent mode of action. Molecular docking calculations demonstrated interactions of RO8191 with the CHIKV E proteins, corroborated by the ATR-FTIR assay, and with non-structural proteins, supported by the CHIKV-subgenomic replicon cells assay.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Interferón Tipo I , Animales , Chlorocebus aethiops , Humanos , Fiebre Chikungunya/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Simulación del Acoplamiento Molecular , Replicación Viral , Células Vero , Interferón Tipo I/farmacología
18.
Inflammation ; 46(1): 297-312, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36215001

RESUMEN

Hyper-transmissibility with decreased disease severity is a typical characteristic of the SARS-CoV-2 Omicron variant. To understand this phenomenon, we used various bioinformatics approaches to analyze randomly selected genome sequences (one each) of the Gamma, Delta, and Omicron variants submitted to NCBI from December 15 to 31, 2021. We report that the pathogenicity of SARS-CoV-2 variants decreases in the order of Wuhan > Gamma > Delta > Omicron; however, the antigenic property follows the order of Omicron > Gamma > Wuhan > Delta. The Omicron spike RBD shows lower pathogenicity but higher antigenicity than other variants. The reported decreased disease severity by the Omicron variant may be due to its decreased pro-inflammatory and IL-6 stimulation and increased IFN-γ and IL-4 induction efficacy. The mutations in the N protein are probably associated with this decreased IL-6 induction and human DDX21-mediated increased IL-4 production for Omicron. Due to the mutations, the stability of S, M, N, and E proteins decreases in the order of Omicron > Gamma > Delta > Wuhan. Although a stronger spike RBD-hACE2 binding of Omicron increases its transmissibility, the lowest stability of its spike protein makes spike RBD-hACE2 interaction weak for systemic infection and for causing severe disease. Finally, the highest instability of the Omicron E protein may also be associated with decreased viral maturation and low viral load, leading to less severe disease and faster recovery. Our findings will contribute to the understanding of the dynamics of SARS-CoV-2 variants and the management of emerging variants. This minimal genome-based method may be used for other similar viruses avoiding robust analysis.


Asunto(s)
COVID-19 , Citocinas , Humanos , SARS-CoV-2/genética , Interleucina-4 , Interleucina-6 , Virulencia , Factores de Transcripción , Antiinflamatorios , ARN Helicasas DEAD-box
19.
Viruses ; 15(9)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37766292

RESUMEN

The SARS-CoV-2 entry into host cells is mainly mediated by the interactions between the viral spike protein (S) and the ACE-2 cell receptor, which are highly glycosylated. Therefore, carbohydrate binding agents may represent potential candidates to abrogate virus infection. Here, we evaluated the in vitro anti-SARS-CoV-2 activity of two mannose-binding lectins isolated from the Brazilian plants Canavalia brasiliensis and Dioclea violacea (ConBR and DVL). These lectins inhibited SARS-CoV-2 Wuhan-Hu-1 strain and variants Gamma and Omicron infections, with selectivity indexes (SI) of 7, 1.7, and 6.5, respectively for ConBR; and 25, 16.8, and 22.3, for DVL. ConBR and DVL inhibited over 95% of the early stages of the viral infection, with strong virucidal effect, and also protected cells from infection and presented post-entry inhibition. The presence of mannose resulted in the complete lack of anti-SARS-CoV-2 activity by ConBR and DVL, recovering virus titers. ATR-FTIR, molecular docking, and dynamic simulation between SARS-CoV-2 S and either lectins indicated molecular interactions with predicted binding energies of -85.4 and -72.0 Kcal/Mol, respectively. Our findings show that ConBR and DVL lectins possess strong activities against SARS-CoV-2, potentially by interacting with glycans and blocking virus entry into cells, representing potential candidates for the development of novel antiviral drugs.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , Lectinas de Unión a Manosa , SARS-CoV-2 , Simulación del Acoplamiento Molecular , Lectinas/farmacología
20.
PLoS One ; 17(1): e0262369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35061788

RESUMEN

Glycation process refers to reactions between reduction sugars and amino acids that can lead to formation of advanced glycation end products (AGEs) which are related to changes in chemical and functional properties of biological structures that accumulate during aging and diseases. The aim of this study was to perform and analyze in vitro glycation by fructose and methylglyoxal (MGO) using salivary fluid, albumin, lysozyme, and salivary α-amylase (sAA). Glycation effect was analyzed by biochemical and spectroscopic methods. The results were obtained by fluorescence analysis, infrared spectroscopy (total attenuated reflection-Fourier transform, ATR-FTIR) followed by multivariate analysis of principal components (PCA), protein profile, immunodetection, enzymatic activity and oxidative damage to proteins. Fluorescence increased in all glycated samples, except in saliva with fructose. The ATR-FTIR spectra and PCA analysis showed structural changes related to the vibrational mode of glycation of albumin, lysozyme, and salivary proteins. Glycation increased the relative molecular mass (Mr) in protein profile of albumin and lysozyme. Saliva showed a decrease in band intensity when glycated. The analysis of sAA immunoblotting indicated a relative reduction in intensity of its correspondent Mr after sAA glycation; and a decrease in its enzymatic activity was observed. Carbonylation levels increased in all glycated samples, except for saliva with fructose. Thiol content decreased only for glycated lysozyme and saliva with MGO. Therefore, glycation of salivary fluid and sAA may have the potential to identify products derived by glycation process. This opens perspectives for further studies on the use of saliva, an easy and non-invasive collection fluid, to monitor glycated proteins in the aging process and evolution of diseases.


Asunto(s)
Fructosa/análisis , Productos Finales de Glicación Avanzada/metabolismo , Piruvaldehído/análisis , Adulto , Albúminas/análisis , Albúminas/química , Femenino , Productos Finales de Glicación Avanzada/análisis , Glicosilación , Voluntarios Sanos , Humanos , Masculino , Muramidasa/análisis , Muramidasa/química , Estrés Oxidativo , Saliva/química , Proteínas y Péptidos Salivales/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA