Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO J ; 40(23): e108788, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725842

RESUMEN

During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and for NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α/ß, the GTPase Ran, or chromatin is crucial for its function in the assembly process. Instead, an N-terminal fragment of Nup50 can stimulate the Ran GTPase guanine nucleotide exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in NPC reformation at the end of mitosis. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild-type protein in in vitro NPC assembly assays, whereas excess RCC1 can compensate the loss of Nup50.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mitosis , Mutación , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Humanos , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Xenopus laevis
2.
Nature ; 573(7772): 144-148, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31435012

RESUMEN

The ability of proteins and nucleic acids to undergo liquid-liquid phase separation has recently emerged as an important molecular principle of how cells rapidly and reversibly compartmentalize their components into membrane-less organelles such as the nucleolus, processing bodies or stress granules1,2. How the assembly and turnover of these organelles are controlled, and how these biological condensates selectively recruit or release components are poorly understood. Here we show that members of the large and highly abundant family of RNA-dependent DEAD-box ATPases (DDXs)3 are regulators of RNA-containing phase-separated organelles in prokaryotes and eukaryotes. Using in vitro reconstitution and in vivo experiments, we demonstrate that DDXs promote phase separation in their ATP-bound form, whereas ATP hydrolysis induces compartment turnover and release of RNA. This mechanism of membrane-less organelle regulation reveals a principle of cellular organization that is conserved from bacteria to humans. Furthermore, we show that DDXs control RNA flux into and out of phase-separated organelles, and thus propose that a cellular network of dynamic, DDX-controlled compartments establishes biochemical reaction centres that provide cells with spatial and temporal control of various RNA-processing steps, which could regulate the composition and fate of ribonucleoprotein particles.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Compartimento Celular , ARN Helicasas DEAD-box/metabolismo , Células Eucariotas/enzimología , Orgánulos/enzimología , Orgánulos/metabolismo , Células Procariotas/enzimología , Biocatálisis , Línea Celular , Secuencia Conservada , Gránulos Citoplasmáticos/metabolismo , Células Eucariotas/citología , Evolución Molecular , Humanos , Células Procariotas/citología , ARN/metabolismo , Transporte de ARN , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
EMBO J ; 31(20): 4072-84, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22960634

RESUMEN

Nuclear pore complexes (NPCs) fuse the two membranes of the nuclear envelope (NE) to a pore, connecting cytoplasm and nucleoplasm and allowing exchange of macromolecules between these compartments. Most NPC proteins do not contain integral membrane domains and thus it is largely unclear how NPCs are embedded and anchored in the NE. Here, we show that the evolutionary conserved nuclear pore protein Nup53 binds independently of other proteins to membranes, a property that is crucial for NPC assembly and conserved between yeast and vertebrates. The vertebrate protein comprises two membrane binding sites, of which the C-terminal domain has membrane deforming capabilities, and is specifically required for de novo NPC assembly and insertion into the intact NE during interphase. Dimerization of Nup53 contributes to its membrane interaction and is crucial for its function in NPC assembly.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Dimerización , Células HeLa , Humanos , Interfase , Liposomas , Fusión de Membrana , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Proteínas de Xenopus/química , Xenopus laevis
4.
Elife ; 82019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30648970

RESUMEN

Processing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. Previously, we identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo (Mugler et al., 2016). Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cicloheximida/farmacología , Gránulos Citoplasmáticos/efectos de los fármacos , Mutación/genética , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Esteroles/farmacología
5.
Elife ; 52016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27692063

RESUMEN

Translational repression and mRNA degradation are critical mechanisms of posttranscriptional gene regulation that help cells respond to internal and external cues. In response to certain stress conditions, many mRNA decay factors are enriched in processing bodies (PBs), cellular structures involved in degradation and/or storage of mRNAs. Yet, how cells regulate assembly and disassembly of PBs remains poorly understood. Here, we show that in budding yeast, mutations in the DEAD-box ATPase Dhh1 that prevent ATP hydrolysis, or that affect the interaction between Dhh1 and Not1, the central scaffold of the CCR4-NOT complex and an activator of the Dhh1 ATPase, prevent PB disassembly in vivo. Intriguingly, this process can be recapitulated in vitro, since recombinant Dhh1 and RNA, in the presence of ATP, phase-separate into liquid droplets that rapidly dissolve upon addition of Not1. Our results identify the ATPase activity of Dhh1 as a critical regulator of PB formation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Sustancias Macromoleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo
6.
Dev Cell ; 31(3): 305-318, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25443297

RESUMEN

Chromatin undergoes extensive structural changes during the cell cycle. Upon mitotic entry, metazoan chromatin undergoes tremendous condensation, creating mitotic chromosomes with 50-fold greater compaction relative to interphase chromosomes. At the end of mitosis, chromosomes reestablish functional interphase chromatin competent for replication and transcription through a decondensation process that is cytologically well described. However, the underlying molecular events and factors remain unidentified. We describe a cell-free system that recapitulates chromatin decondensation based on purified mitotic chromatin and Xenopus egg extracts. Using biochemical fractionation, we identify RuvB-like ATPases as chromatin decondensation factors and demonstrate that their ATPase activity is essential for decondensation. Our results show that decompaction of metaphase chromosomes is not merely an inactivation of known chromatin condensation factors but rather an active process requiring specific molecular machinery. Our cell-free system provides an important tool for further molecular characterization of chromatin decondensation and its coordination with concomitant processes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , Mitosis/fisiología , Animales , Sistema Libre de Células , Interfase/fisiología , Xenopus
7.
Mol Biol Cell ; 23(4): 740-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22171326

RESUMEN

Nuclear pore complexes (NPCs) are large macromolecular assemblies that control all transport across the nuclear envelope. They are formed by about 30 nucleoporins (Nups), which can be roughly categorized into those forming the structural skeleton of the pore and those creating the central channel and thus providing the transport and gating properties of the NPC. Here we show that the conserved nucleoporin Nup93 is essential for NPC assembly and connects both portions of the NPC. Although the C-terminal domain of the protein is necessary and sufficient for the assembly of a minimal structural backbone, full-length Nup93 is required for the additional recruitment of the Nup62 complex and the establishment of transport-competent NPCs.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Células Cultivadas , Glicoproteínas de Membrana/metabolismo , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Xenopus , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA