Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proteins ; 92(7): 854-864, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38458997

RESUMEN

Hydration plays a crucial role in the refolding of intrinsically disordered proteins into amyloid fibrils; however, the specific interactions between water and protein that may contribute to this process are still unknown. In our previous studies of alpha-synuclein (aSyn), we have shown that waters confined in fibril cavities are stabilizing features of this pathological fold; and that amino acids that hydrogen bond with these confined waters modulate primary and seeded aggregation. Here, we extend our aSyn molecular dynamics (MD) simulations with three new polymorphs and correlate MD trajectory information with known post-translational modifications (PTMs) and experimental data. We show that cavity residues are more evolutionarily conserved than non-cavity residues and are enriched with PTM sites. As expected, the confinement within hydrophilic cavities results in more stably hydrated amino acids. Interestingly, cavity PTM sites display the longest protein-water hydrogen bond lifetimes, three-fold greater than non-PTM cavity sites. Utilizing the deep mutational screen dataset by Newberry et al. and the Thioflavin T aggregation review by Pancoe et al. parsed using a fibril cavity/non-cavity definition, we show that hydrophobic changes to amino acids in cavities have a larger effect on fitness and aggregation rate than residues outside cavities, supporting our hypothesis that these sites are involved in the inhibition of aSyn toxic fibrillization. Finally, we expand our study to include analysis of fibril structures of tau, FUS, TDP-43, prion, and hnRNPA1; all of which contained hydrated cavities, with tau, FUS, and TDP-43 recapitulating our PTM results in aSyn fibril cavities.


Asunto(s)
Proteínas de Unión al ADN , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional , Proteína FUS de Unión a ARN , alfa-Sinucleína , Proteínas tau , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Proteínas tau/química , Proteínas tau/metabolismo , Proteínas tau/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Amiloide/química , Amiloide/metabolismo , Agua/química , Agua/metabolismo , Mutación
2.
Mol Pharm ; 20(4): 1884-1897, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897792

RESUMEN

Tumor necrosis factor (TNF) is a key regulator of immune responses and plays a significant role in the initiation and maintenance of inflammation. Upregulation of TNF expression leads to several inflammatory diseases, such as Crohn's, ulcerative colitis, and rheumatoid arthritis. Despite the clinical success of anti-TNF treatments, the use of these therapies is limited because they can induce adverse side effects through inhibition of TNF biological activity, including blockade of TNF-induced immunosuppressive function of TNFR2. Using yeast display, we identified a synthetic affibody ligand (ABYTNFR1-1) with high binding affinity and specificity for TNFR1. Functional assays showed that the lead affibody potently inhibits TNF-induced NF-κB activation (IC50 of 0.23 nM) and, crucially, does not block the TNFR2 function. Additionally, ABYTNFR1-1 acts non-competitively─it does not block TNF binding or inhibit receptor-receptor interactions in pre-ligand-assembled dimers─thereby enhancing inhibitory robustness. The mechanism, monovalent potency, and affibody scaffold give this lead molecule uniquely strong potential as a therapeutic candidate for inflammatory diseases.


Asunto(s)
Receptores Tipo II del Factor de Necrosis Tumoral , Receptores Tipo I de Factores de Necrosis Tumoral , Receptores Tipo I de Factores de Necrosis Tumoral/química , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/química , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Ligandos , Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/metabolismo
3.
Biomacromolecules ; 23(9): 3822-3830, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35944154

RESUMEN

The molecular origin of sickle cell disease (SCD) has been known since 1949, but treatments remain limited. We present the first high-throughput screening (HTS) platform for discovering small molecules that directly inhibit sickle hemoglobin (HbS) oligomerization and improve blood flow, potentially overcoming a long-standing bottleneck in SCD drug discovery. We show that at concentrations far below the threshold for nucleation and rapid polymerization, deoxygenated HbS forms small assemblies of multiple α2ß2 tetramers. Our HTS platform leverages high-sensitivity fluorescence lifetime measurements that monitor these temporally stable prefibrillar HbS oligomers. We show that this approach is sensitive to compounds that inhibit HbS polymerization with or without modulating hemoglobin oxygen binding affinity. We also report the results of a pilot small-molecule screen in which we discovered and validated several novel inhibitors of HbS oligomerization.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Descubrimiento de Drogas , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobinas , Humanos , Oxígeno/metabolismo
4.
Biochemistry ; 59(40): 3856-3868, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32941010

RESUMEN

Fatty acid-induced upregulation of death receptor 5 (DR5) and its cognate ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), promotes hepatocyte lipoapoptosis, which is a key mechanism in the progression of fatty liver disease. Accordingly, inhibition of DR5 signaling represents an attractive strategy for treating fatty liver disease. Ligand competition strategies are prevalent in tumor necrosis factor receptor antagonism, but recent studies have suggested that noncompetitive inhibition through perturbation of the receptor conformation may be a compelling alternative. To this end, we used yeast display and a designed combinatorial library to identify a synthetic 58-amino acid affibody ligand that specifically binds DR5. Biophysical and biochemical studies show that the affibody neither blocks TRAIL binding nor prevents the receptor-receptor interaction. Live-cell fluorescence lifetime measurements indicate that the affibody induces a conformational change in transmembrane dimers of DR5 and favors an inactive state of the receptor. The affibody inhibits apoptosis in TRAIL-treated Huh-7 cells, an in vitro model of fatty liver disease. Thus, this lead affibody serves as a potential drug candidate, with a unique mechanism of action, for fatty liver disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Línea Celular Tumoral , Descubrimiento de Drogas , Células HEK293 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Ligandos , Multimerización de Proteína/efectos de los fármacos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
5.
Biophys J ; 117(7): 1234-1249, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31493861

RESUMEN

Microtubules are multistranded polymers in eukaryotic cells that support key cellular functions such as chromosome segregation, motor-based cargo transport, and maintenance of cell polarity. Microtubules self-assemble via "dynamic instability," in which the dynamic plus ends switch stochastically between alternating phases of polymerization and depolymerization. A key question in the field is what are the atomistic origins of this switching, i.e., what is different between the GTP- and GDP-tubulin states that enables microtubule growth and shortening, respectively? More generally, a major challenge in biology is how to connect theoretical frameworks across length- and timescales, from atoms to cellular behavior. In this study, we describe a multiscale model by linking atomistic molecular dynamics (MD), molecular Brownian dynamics (BD), and cellular-level thermokinetic modeling of microtubules. Here, we investigated the underlying interaction energy when tubulin dimers associate laterally by performing all-atom MD simulations. We found that the lateral potential energy is not significantly different among three nucleotide states of tubulin, GTP, GDP, and GMPCPP and is estimated to be ≅ -11 kBT. Furthermore, using MD potential energy in our BD simulations of tubulin dimers confirms that the lateral bond is weak on its own, with a mean lifetime of ∼0.1 µs, implying that the longitudinal bond is required for microtubule assembly. We conclude that nucleotide-dependent lateral-bond strength is not the key mediator microtubule dynamic instability, implying that GTP acts elsewhere to exert its stabilizing influence on microtubule polymer. Furthermore, the estimated lateral-bond strength (ΔGlat0≅ -5 kBT) is well-aligned with earlier estimates based on thermokinetic modeling and light microscopy measurements. Thus, we have computationally connected atomistic-level structural information, obtained by cryo-electron microscopy, to cellular-scale microtubule assembly dynamics using a combination of MD, BD, and thermokinetic models to bridge from Ångstroms to micrometers and from femtoseconds to minutes.


Asunto(s)
Simulación de Dinámica Molecular , Tubulina (Proteína)/metabolismo , Cinética , Unión Proteica , Conformación Proteica , Termodinámica , Tubulina (Proteína)/química
6.
Alzheimers Dement ; 15(11): 1489-1502, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31653529

RESUMEN

OBJECTIVE: Understanding the heterogeneous pathology in Alzheimer's disease and related tauopathies is one of the most urgent and fundamental challenges facing the discovery of novel disease-modifying therapies. Through monitoring ensembles of toxic and nontoxic tau oligomers spontaneously formed in cells, our biosensor technology can identify tool compounds that modulate tau oligomer structure and toxicity, providing much needed insight into the nature and properties of toxic tau oligomers. BACKGROUND: Tauopathies are a group of neurodegenerative disorders characterized by pathologic aggregation of the microtubule binding protein tau. Recent studies suggest that tau oligomers are the primary toxic species in tauopathies. NEW/UPDATED HYPOTHESIS: We hypothesize that tau biosensors capable of monitoring tau oligomer conformation are able to identify tool compounds that modulate the structure and conformation of these tau assemblies, providing key insight into the unique structural fingerprints of toxic tau oligomers. These fingerprints will provide gravely needed biomarker profiles to improve staging of early tauopathy pathology and generate lead compounds for potential new therapeutics. Our time-resolved fluorescence resonance energy transfer biosensors provide us an exquisitely sensitive technique to monitor minute structural changes in monomer and oligomer conformation. In this proof-of-concept study, we identified a novel tool compound, MK-886, which directly binds tau, perturbs the conformation of toxic tau oligomers, and rescues tau-induced cytotoxicity. Furthermore, we show that MK-886 alters the conformation of tau monomer at the proline-rich and microtubule binding regions, stabilizing an on-pathway oligomer. MAJOR CHALLENGES FOR THE HYPOTHESIS: Our approach monitors changes in the ensemble of assemblies that are spontaneously formed in cells but does not specifically isolate or enrich unique toxic tau species. However, time-resolved fluorescence resonance energy transfer does not provide high-resolution, atomic scale information, requiring additional experimental techniques to resolve the structural features stabilized by different tool compounds. LINKAGE TO OTHER MAJOR THEORIES: Our biosensor technology is broadly applicable to other areas of tauopathy therapeutic development. These biosensors can be readily modified for different isoforms of tau, specific post-translational modifications, and familial Alzheimer's disease-associated mutations. We are eager to explore tau interactions with chaperone proteins, monitor cross-reactivity with other intrinsically disordered proteins, and target seeded oligomer pathology.


Asunto(s)
Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Tauopatías , Proteínas tau/metabolismo , Encéfalo/patología , Humanos , Indoles
7.
J Membr Biol ; 251(5-6): 757, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30054671

RESUMEN

The original version of the article unfortunately contained error in author group; two authors were not submitted and published in the original version. Also the funding information is erroneously omitted.

8.
Nat Chem Biol ; 12(10): 860-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27547920

RESUMEN

Oxidation of methionine disrupts the structure and function of a range of proteins, but little is understood about the chemistry that underlies these perturbations. Using quantum mechanical calculations, we found that oxidation increased the strength of the methionine-aromatic interaction motif, a driving force for protein folding and protein-protein interaction, by 0.5-1.4 kcal/mol. We found that non-hydrogen-bonded interactions between dimethyl sulfoxide (a methionine analog) and aromatic groups were enriched in both the Protein Data Bank and Cambridge Structural Database. Thermal denaturation and NMR spectroscopy experiments on model peptides demonstrated that oxidation of methionine stabilized the interaction by 0.5-0.6 kcal/mol. We confirmed the biological relevance of these findings through a combination of cell biology, electron paramagnetic resonance spectroscopy and molecular dynamics simulations on (i) calmodulin structure and dynamics, and (ii) lymphotoxin-α binding toTNFR1. Thus, the methionine-aromatic motif was a determinant of protein structural and functional sensitivity to oxidative stress.


Asunto(s)
Hidrocarburos Aromáticos/química , Metionina/química , Hidrocarburos Aromáticos/metabolismo , Metionina/metabolismo , Modelos Moleculares , Oxidación-Reducción , Teoría Cuántica
9.
Biophys J ; 113(2): 381-392, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28746849

RESUMEN

The precise mechanism by which binding of tumor necrosis factor ligands to the extracellular domain of their corresponding receptors transmits signals across the plasma membrane has remained elusive. Recent studies have proposed that activation of several tumor necrosis factor receptors, including Death Receptor 5, involves a scissorlike opening of the disulfide-linked transmembrane (TM) dimer. Using time-resolved fluorescence resonance energy transfer, we provide, to our knowledge, the first direct biophysical evidence that Death Receptor 5 TM-dimers open in response to ligand binding. Then, to probe the importance of the closed-to-open TM domain transition in the overall energetics of receptor activation, we designed point-mutants (alanine to phenylalanine) in the predicted, tightly packed TM domain dimer interface. We hypothesized that the bulky residues should destabilize the closed conformation and eliminate the ∼3 kcal/mol energy barrier to TM domain opening and the âˆ¼2 kcal/mol energy difference between the closed and open states, thus oversensitizing the receptor. To test this, we used all-atom molecular dynamics simulations of the isolated TM domain in explicit lipid bilayers coupled to thermodynamic potential of mean force calculations. We showed that single point mutants at the interface altered the energy landscape as predicted, but were not enough to completely eliminate the barrier to opening. However, the computational model did predict that a double mutation at i, i+4 positions at the center of the TM domain dimer eliminates the barrier and stabilizes the open conformation relative to the closed. We tested these mutants in cells with time-resolved fluorescence resonance energy transfer and death assays, and show remarkable agreement with the calculations. The single mutants had a small effect on TM domain separation and cell death, whereas the double mutant significantly increased the TM domain separation and more than doubled the sensitivity of cells to ligand stimulation.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Alanina/química , Alanina/metabolismo , Western Blotting , Supervivencia Celular/fisiología , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Mutación Puntual , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/química , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Termodinámica , Transfección , Agua/química
10.
Biochim Biophys Acta Bioenerg ; 1858(2): 126-136, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27836697

RESUMEN

IM30/Vipp1 proteins are crucial for thylakoid membrane biogenesis in chloroplasts and cyanobacteria. A characteristic C-terminal extension distinguishes these proteins from the homologous bacterial PspA proteins, and this extension has been discussed to be key for the IM30/Vipp1 activity. Here we report that the extension of the Synechocystis IM30 protein is indispensable, and argue that both, the N-terminal PspA-domain as well as the C-terminal extension are needed in order for the IM30 protein to conduct its in vivo function. In vitro, we show that the PspA-domain of IM30 is vital for stability/folding and oligomer formation of IM30 as well as for IM30-triggered membrane fusion. In contrast, the IM30 C-terminal domain is involved in and necessary to stabilize defined contacts to negatively charged membrane surfaces, and to modulate the IM30-induced membrane fusion activity. Although the two IM30 protein domains have distinct functional roles, only together they enable IM30 to work properly.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Tilacoides/metabolismo , Cloroplastos/metabolismo , Unión Proteica/fisiología , Dominios Proteicos , Synechocystis/metabolismo
11.
Biochim Biophys Acta ; 1858(7 Pt B): 1594-609, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26972046

RESUMEN

We review experimental and simulation approaches that have been used to determine curvature generation and remodeling of lipid bilayers by membrane-bending proteins. Particular emphasis is placed on the complementary approaches used to study α-Synuclein (αSyn), a major protein involved in Parkinson's disease (PD). Recent cellular and biophysical experiments have shown that the protein 1) deforms the native structure of mitochondrial and model membranes; and 2) inhibits vesicular fusion. Today's advanced experimental and computational technology has made it possible to quantify these protein-induced changes in membrane shape and material properties. Collectively, experiments, theory and multi-scale simulation techniques have established the key physical determinants of membrane remodeling and rigidity: protein binding energy, protein partition depth, protein density, and membrane tension. Despite the exciting and significant progress made in recent years in these areas, challenges remain in connecting biophysical insights to the cellular processes that lead to disease. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Simulación de Dinámica Molecular , alfa-Sinucleína/química , alfa-Sinucleína/ultraestructura , Sitios de Unión , Simulación por Computador , Fluidez de la Membrana , Modelos Químicos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos
12.
Biochim Biophys Acta Biomembr ; 1859(4): 529-536, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27742354

RESUMEN

Using molecular dynamics simulations, we have explored the effect of asymmetric lipids-specifically those that contain one polyunsaturated (PUFA) and one saturated fatty acid chain-on phase separation in heterogeneous membranes. These lipids are prevalent in neuronal membranes, particularly in synaptic membranes, where the Parkinson's Disease protein α-Synuclein (αS) is found. We have therefore explored the relationship between asymmetric, PUFA-containing lipids, and αS. The simulations show that asymmetric lipids partition to the liquid disordered (Ld) phase of canonical raft mixtures because of the highly disordered PUFA chain. In the case of a membrane built to mimic the lipid composition of a synaptic vesicle, the PUFA-containing asymmetric lipids completely disrupt phase separation. Because αS is positively charged, we show that it partitions with negatively charged lipids, regardless of the saturation state of the chains. Additionally, αS preferentially associates with the polyunsaturated fatty acid tails of both charged and neutral lipids. This is a consequence of those chains' ability to accommodate the void beneath the amphipathic helix. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , alfa-Sinucleína/química , Materiales Biomiméticos/química , Humanos , Microdominios de Membrana/química , Conformación Molecular , Transición de Fase , Unión Proteica , Electricidad Estática
13.
Biochim Biophys Acta Biomembr ; 1859(9 Pt A): 1398-1416, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28089689

RESUMEN

The challenge of crystallizing single-pass plasma membrane receptors has remained an obstacle to understanding the structural mechanisms that connect extracellular ligand binding to cytosolic activation. For example, the complex interplay between receptor oligomerization and conformational dynamics has been, historically, only inferred from static structures of isolated receptor domains. A fundamental challenge in the field of membrane receptor biology, then, has been to integrate experimentally observable dynamics of full-length receptors (e.g. diffusion and conformational flexibility) into static structural models of the disparate domains. In certain receptor families, e.g. the ErbB receptors, structures have led somewhat linearly to a putative model of activation. In other families, e.g. the tumor necrosis factor (TNF) receptors, structures have produced divergent hypothetical mechanisms of activation and transduction. Here, we discuss in detail these and other related receptors, with the goal of illuminating the current challenges and opportunities in building comprehensive models of single-pass receptor activation. The deepening understanding of these receptors has recently been accelerated by new experimental and computational tools that offer orthogonal perspectives on both structure and dynamics. As such, this review aims to contextualize those technological developments as we highlight the elegant and complex conformational communication between receptor domains. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.


Asunto(s)
Membrana Celular/genética , Receptores ErbB/genética , Receptores del Factor de Necrosis Tumoral/genética , Relación Estructura-Actividad , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/metabolismo
14.
J Membr Biol ; 250(2): 183-193, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28239748

RESUMEN

α-Synuclein is the primary protein found in Lewy bodies, the protein and lipid aggregates associated with Parkinson's disease and Lewy body dementia. The protein folds into a uniquely long amphipathic α-helix (AH) when bound to a membrane, and at high enough concentrations, it induces large-scale remodeling of membranes (tubulation and vesiculation). By engineering a less hydrophobic variant of α-Synuclein, we previously showed that the energy associated with binding of α-Synuclein's AH correlates with the extent of membrane remodeling (Braun et al. in J Am Chem Soc 136:9962-9972, 2014). In this study, we combine fluorescence correlation spectroscopy, electron microscopy, and vesicle clearance assays with coarse-grained molecular dynamics simulations to test the impact of decreasing the length of the amphipathic helix on membrane binding energy and tubulation. We show that truncation of α-Synuclein's AH length by approximately 15% reduces both its membrane binding affinity (by fivefold) and membrane remodeling capacity (by nearly 50% on per mole of bound protein basis). Results from simulations correlate well with the experiments and lend support to the idea that at high protein density there is a stabilization of individual, protein-induced membrane curvature fields. The extent to which these curvature fields are stabilized, a function of binding energy, dictates the extent of tubulation. Somewhat surprisingly, we find that this stabilization does not correlate directly with the geometric distribution of the proteins on the membrane surface.


Asunto(s)
alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Dicroismo Circular , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Teóricos , Simulación de Dinámica Molecular , Unión Proteica , Espectrometría de Fluorescencia
15.
Biophys J ; 108(8): 1848-51, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25902424

RESUMEN

Using coarse-grained molecular dynamics simulations we have explored the effect of α-Synuclein (αSyn) on the structural and mechanical properties of small unilamellar vesicles in the fluid-phase. The study is motivated by observations that a high density of membrane-bound αSyn inhibits the fusion of synthetic small unilamellar vesicles. By combining three-dimensional pressure tensor calculations with our recently developed spherical harmonics fluctuation analysis approach, we show a reduction in membrane surface tension and increased membrane undulations when αSyn is bound to the vesicle's outer leaflet at a 200:1 L/P. The protein effects these changes by decreasing the negative pressure in the headgroup region of the outer leaflet and increasing the positive pressure throughout the hydrocarbon core.


Asunto(s)
Liposomas Unilamelares/química , alfa-Sinucleína/química , 1,2-Dipalmitoilfosfatidilcolina/química , Unión Proteica , Estrés Mecánico , alfa-Sinucleína/metabolismo
16.
Phys Chem Chem Phys ; 17(24): 15561-8, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-25665896

RESUMEN

α-Synuclein is an intrinsically disordered protein whose aggregation is a hallmark of Parkinson's disease. In neurons, α-synuclein is thought to play important roles in mediating both endo- and exocytosis of synaptic vesicles through interactions with either the lipid bilayer or other proteins. Upon membrane binding, the N-terminus of α-synuclein forms a helical structure and inserts into the hydrophobic region of the outer membrane leaflet. However, membrane structural changes induced by α-synuclein are still largely unclear. Here we report a substantial membrane area expansion induced by the binding of α-synuclein monomers. This measurement is accomplished by observing the increase of membrane area during the binding of α-synuclein to pipette-aspirated giant vesicles. The extent of membrane area expansion correlates linearly with the density of α-synuclein on the membrane, revealing a constant area increase induced by the binding per α-synuclein molecule. The area expansion per synuclein is found to exhibit a strong dependence on lipid composition, but is independent of membrane tension and vesicle size. Fragmentation or tubulation of the membrane follows the membrane expansion process. However, contrary to BAR domain proteins, no distinct tubulation-transition density can apparently be identified for α-synuclein, suggesting a more complex membrane curvature generation mechanism. Consideration of α-synuclein's membrane binding free energy and biophysical properties of the lipid bilayer leads us to conclude that membrane expansion by α-synuclein results in thinning of the bilayer. These membrane thinning and tubulation effects may underlie α-synuclein's role in mediating cell trafficking processes such as endo- and exocytosis.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , alfa-Sinucleína/metabolismo , Fenómenos Biofísicos , Membrana Dobles de Lípidos/química , alfa-Sinucleína/química , alfa-Sinucleína/aislamiento & purificación
17.
Biophys J ; 106(6): L21-4, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24655519

RESUMEN

It has long been presumed that activation of the apoptosis-initiating Death Receptor 5, as well as other structurally homologous members of the TNF-receptor superfamily, relies on ligand-stabilized trimerization of noninteracting receptor monomers. We and others have proposed an alternate model in which the TNF-receptor dimer-sitting at the vertices of a large supramolecular receptor network of ligand-bound receptor trimers-undergoes a closed-to-open transition, propagated through a scissorslike conformational change in a tightly bundled transmembrane (TM) domain dimer. Here we have combined electron paramagnetic resonance spectroscopy and potential-of-mean force calculations on the isolated TM domain of the long isoform of DR5. The experiments and calculations both independently validate that the opening transition is intrinsic to the physical character of the TM domain dimer, with a significant energy barrier separating the open and closed states.


Asunto(s)
Simulación de Dinámica Molecular , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/química , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular
18.
J Am Chem Soc ; 136(28): 9962-72, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24960410

RESUMEN

We have investigated the membrane remodeling capacity of the N-terminal membrane-binding domain of α-synuclein (α-Syn100). Using fluorescence correlation spectroscopy and vesicle clearance assays, we show that α-Syn100 fully tubulates POPG vesicles, the first demonstration that the amphipathic helix on its own is capable of this effect. We also show that at equal density of membrane-bound protein, α-Syn has dramatically reduced affinity for, and does not tubulate, vesicles composed of a 1:1 POPG:POPC mixture. Coarse-grained molecular dynamics simulations suggested that the difference between the pure POPG and mixture results may be attributed to differences in the protein's partition depth, the membrane's hydrophobic thickness, and disruption of acyl chain order. To explore the importance of these attributes compared with the role of the reduced binding energy, we created an α-Syn100 variant in which we removed the hydrophobic core of the non-amyloid component (NAC) domain and tested its impact on pure POPG vesicles. We observed a substantial reduction in binding affinity and tubulation, and simulations of the NAC-null protein suggested that the reduced binding energy increases the protein mobility on the bilayer surface, likely impacting the protein's ability to assemble into organized pretubule structures. We also used simulations to explore a potential role for interleaflet coupling as an additional driving force for tubulation. We conclude that symmetry across the leaflets in the tubulated state maximizes the interaction energy of the two leaflets and relieves the strain induced by the hydrophobic void beneath the amphipathic helix.


Asunto(s)
Membranas Artificiales , alfa-Sinucleína/farmacología , Lípidos/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química
19.
J Membr Biol ; 247(9-10): 883-95, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24930025

RESUMEN

Amphipathic polymers known as "amphipols" provide a highly stabilizing environment for handling membrane proteins in aqueous solutions. A8-35, an amphipol with a polyacrylate backbone and hydrophobic grafts, has been extensively characterized and widely employed for structural and functional studies of membrane proteins using biochemical and biophysical approaches. Given the sensitivity of membrane proteins to their environment, it is important to examine what effects amphipols may have on the structure and dynamics of the proteins they complex. Here we present the first molecular dynamics study of an amphipol-stabilized membrane protein, using Escherichia coli OmpX as a model. We begin by describing the structure of the complexes formed by supplementing OmpX with increasing amounts of A8-35, in order to determine how the amphipol interacts with the transmembrane and extramembrane surfaces of the protein. We then compare the dynamics of the protein in either A8-35, a detergent, or a lipid bilayer. We find that protein dynamics on all accessible length scales is restrained by A8-35, which provides a basis to understanding some of the stabilizing and functional effects of amphipols that have been experimentally observed.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Membrana Celular/química , Membrana Celular/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Hidrolasas/química , Hidrolasas/ultraestructura , Simulación de Dinámica Molecular , Polímeros/química , Propilaminas/química , Tensoactivos/química , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Modelos Biológicos , Modelos Químicos , Conformación Proteica , Solubilidad , Soluciones , Propiedades de Superficie , Agua/química
20.
J Membr Biol ; 247(9-10): 897-908, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25204390

RESUMEN

Amphipols are a class of polymeric surfactants that can stabilize membrane proteins in aqueous solutions as compared to detergents. A8-35, the best-characterized amphipol to date, is composed of a polyacrylate backbone with ~35% of the carboxylates free, ~25% grafted with octyl side-chains, and ~40% with isopropyl ones. In aqueous solutions, A8-35 self-organizes into globular particles with a molecular mass of ~40 kDa. The thermal dynamics of A8-35 particles was measured by neutron scattering in the 10-picosecond, 18-picosecond, and 1-nanosecond time-scales on natural abundance and deuterium-labeled molecules, which permitted to separate backbone and side-chain motions. A parallel analysis was performed on molecular dynamics trajectories (Perlmutter et al., Langmuir 27:10523-10537, 2011). Experimental results and simulations converge, from their respective time-scales, to show that A8-35 particles feature a more fluid hydrophobic core, predominantly containing the octyl chains, and a more rigid solvent-exposed surface, made up predominantly of the hydrophilic polymer backbone. The fluidity of the core is comparable to that of the lipid environment around proteins in the center of biological membranes, as also measured by neutron scattering. The biological activity of proteins depends sensitively on molecular dynamics, which itself is strongly dependent on the immediate macromolecular environment. In this context, the characterization of A8-35 particle dynamics constitutes a step toward understanding the effect of amphipols on membrane protein stability and function.


Asunto(s)
Modelos Químicos , Simulación de Dinámica Molecular , Difracción de Neutrones/métodos , Polímeros/química , Propilaminas/química , Tensoactivos/química , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Conformación Molecular , Solubilidad , Propiedades de Superficie , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA