Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microsyst Nanoeng ; 8: 71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782293

RESUMEN

This work establishes carbon nanofibre-mediated patterning of metal oxide nanostructures, through the combination of electrospinning and vapor-phase transport growth. Electrospinning of a suitable precursor with subsequent carbonization results in the patterning of catalyst gold nanoparticles embedded within carbon nanofibres. During vapor-phase transport growth, these nanofibres allow preferential growth of one-dimensional metal oxide nanostructures, which grow radially outward from the nanofibril axis, yielding a hairy caterpillar-like morphology. The synthesis of metal oxide caterpillars is demonstrated using zinc oxide, indium oxide, and tin oxide. Source and substrate temperatures play the most crucial role in determining the morphology of the metal oxide caterpillars, whereas the distribution of the nanofibres also has a significant impact on the overall morphology. Introducing the current methodology with near-field electrospinning further facilitates user-defined custom patterning of metal oxide caterpillar-like structures.

2.
Mater Sci Eng C Mater Biol Appl ; 126: 112140, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082951

RESUMEN

Multiscale 3D carbon architectures are of particular interest in tissue engineering applications, as these structures may allow for three-dimensional cell colonization essential for tissue growth. In this work, carbon fiber/microlattice hybrid architectures are introduced as innovative multi-scale scaffolds for tissue engineering. The microlattice provides the design freedom and structural integrity, whereas the fibrous component creates a cellular microenvironment for cell colonization. The hybrid structures are fabricated by carbonization of stereolithographically 3D printed epoxy microlattice architectures which are pre-filled with cotton fibers within the empty space of the architectures. The cotton filling result in less shrinkage of the architecture during carbonization, as the tight confinement of the fibrous material prevents the free-shrinkage of the microlattices. The hybrid architecture exhibits a compressive strength of 156.9±25.6 kPa, which is significantly higher than an empty carbon microlattice architecture. Furthermore, the hybrid architecture exhibits a flexible behavior up to 30% compressive strain, which is also promising towards soft-tissue regeneration. Osteoblast-like murine MC3T3-E1 cells are cultured within the 3D hybrid structures. Results show that the cells are able to not only proliferate on the carbon microlattice elements as well as along the carbon fibers, but also make connections with each other across the inner pores created by the fibers, leading to a three-dimensional cell colonization. These carbon fiber/microlattice hybrid structures are promising for future fabrication of functionally graded scaffolds for tissue repair applications.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Fibra de Carbono , Fuerza Compresiva , Ratones , Osteoblastos , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA