Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(38): E8900-E8908, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181294

RESUMEN

Cytokinetic abscission facilitates the irreversible separation of daughter cells. This process requires the endosomal-sorting complexes required for transport (ESCRT) machinery and is tightly regulated by charged multivesicular body protein 4C (CHMP4C), an ESCRT-III subunit that engages the abscission checkpoint (NoCut) in response to mitotic problems such as persisting chromatin bridges within the midbody. Importantly, a human polymorphism in CHMP4C (rs35094336, CHMP4CT232) increases cancer susceptibility. Here, we explain the structural and functional basis for this cancer association: The CHMP4CT232 allele unwinds the C-terminal helix of CHMP4C, impairs binding to the early-acting ESCRT factor ALIX, and disrupts the abscission checkpoint. Cells expressing CHMP4CT232 exhibit increased levels of DNA damage and are sensitized to several conditions that increase chromosome missegregation, including DNA replication stress, inhibition of the mitotic checkpoint, and loss of p53. Our data demonstrate the biological importance of the abscission checkpoint and suggest that dysregulation of abscission by CHMP4CT232 may synergize with oncogene-induced mitotic stress to promote genomic instability and tumorigenesis.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Predisposición Genética a la Enfermedad/genética , Inestabilidad Genómica/genética , Neoplasias/genética , Proteínas de Unión al Calcio/metabolismo , Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Cristalografía por Rayos X , Daño del ADN/genética , Replicación del ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Mitosis/genética , Fosforilación , Polimorfismo Genético , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Biochem Soc Trans ; 42(5): 1396-400, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25233421

RESUMEN

Insulin plays a fundamental role in whole-body glucose homeostasis. Central to this is the hormone's ability to rapidly stimulate the rate of glucose transport into adipocytes and muscle cells [1]. Upon binding its receptor, insulin stimulates an intracellular signalling cascade that culminates in redistribution of glucose transporter proteins, specifically the GLUT4 isoform, from intracellular stores to the plasma membrane, a process termed 'translocation' [1,2]. This is an example of regulated membrane trafficking [3], a process that also underpins other aspects of physiology in a number of specialized cell types, for example neurotransmission in brain/neurons and release of hormone-containing vesicles from specialized secretory cells such as those found in pancreatic islets. These processes invoke a number of intriguing biological questions as follows. How is the machinery involved in these membrane trafficking events mobilized in response to a stimulus? How do the signalling pathways that detect the external stimulus interface with the trafficking machinery? Recent studies of insulin-stimulated GLUT4 translocation offer insight into such questions. In the present paper, we have reviewed these studies and draw parallels with other regulated trafficking systems.


Asunto(s)
Adipocitos Blancos/metabolismo , Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Receptor de Insulina/agonistas , Proteínas SNARE/metabolismo , Transducción de Señal , Animales , Transportador de Glucosa de Tipo 4/química , Humanos , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/química , Proteínas Qc-SNARE/metabolismo , Receptor de Insulina/metabolismo , Proteínas SNARE/química , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
3.
Int J Mol Sci ; 14(5): 9963-78, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23665900

RESUMEN

The facilitative glucose transporter type 4 (GLUT4) is expressed in adipose and muscle and plays a vital role in whole body glucose homeostasis. In the absence of insulin, only ~1% of cellular GLUT4 is present at the plasma membrane, with the vast majority localizing to intracellular organelles. GLUT4 is retained intracellularly by continuous trafficking through two inter-related cycles. GLUT4 passes through recycling endosomes, the trans Golgi network and an insulin-sensitive intracellular compartment, termed GLUT4-storage vesicles or GSVs. It is from GSVs that GLUT4 is mobilized to the cell surface in response to insulin, where it increases the rate of glucose uptake into the cell. As with many physiological responses to external stimuli, this regulated trafficking event involves multiple posttranslational modifications. This review outlines the roles of posttranslational modifications of GLUT4 on its function and insulin-regulated trafficking.


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Animales , Endosomas/metabolismo , Transportador de Glucosa de Tipo 4/análisis , Humanos , Insulina/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteína SUMO-1/metabolismo , Ubiquitina/metabolismo
4.
PeerJ ; 8: e8751, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185116

RESUMEN

Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA-GLUT4-GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA-GLUT4-GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.

5.
iScience ; 23(6): 101244, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32629610

RESUMEN

The inheritance of the midbody remnant (MBR) breaks the symmetry of the two daughter cells, with functional consequences for lumen and primary cilium formation by polarized epithelial cells, and also for development and differentiation. However, despite its importance, neither the relationship between the plasma membrane and the inherited MBR nor the mechanism of MBR inheritance is well known. Here, the analysis by correlative light and ultra-high-resolution scanning electron microscopy reveals a membranous stalk that physically connects the MBR to the apical membrane of epithelial cells. The stalk, which derives from the uncleaved side of the midbody, concentrates the ESCRT machinery. The ESCRT CHMP4C subunit enables MBR inheritance, and its depletion dramatically reduces the percentage of ciliated cells. We demonstrate (1) that MBRs are physically connected to the plasma membrane, (2) how CHMP4C helps maintain the integrity of the connection, and (3) the functional importance of the connection.

6.
Sci Rep ; 9(1): 4710, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886164

RESUMEN

Key to whole body glucose homeostasis is the ability of fat and muscle cells to sequester the facilitative glucose transporter GLUT4 in an intracellular compartment from where it can be mobilized in response to insulin. We have previously demonstrated that this process requires ubiquitination of GLUT4 while numerous other studies have identified several molecules that are also required, including the insulin-responsive aminopeptidase IRAP and its binding partner, the scaffolding protein tankyrase. In addition to binding IRAP, Tankyrase has also been shown to bind the deubiquinating enzyme USP25. Here we demonstrate that USP25 and Tankyrase interact, and colocalise with GLUT4 in insulin-sensitive cells. Furthermore depletion of USP25 from adipocytes reduces cellular levels of GLUT4 and concomitantly blunts the ability of insulin to stimulate glucose transport. Collectively, these data support our model that sorting of GLUT4 into its insulin-sensitive store involves a cycle of ubiquitination and subsequent deubiquitination.


Asunto(s)
Adipocitos/metabolismo , Cistinil Aminopeptidasa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Tanquirasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Células 3T3-L1 , Adipocitos/citología , Animales , Membrana Celular/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Insulina/metabolismo , Ratones , Ubiquitina Tiolesterasa/genética , Ubiquitinación
7.
Cold Spring Harb Protoc ; 2016(2): pdb.prot083691, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26832682

RESUMEN

Fractionation techniques can facilitate the isolation of intracellular organelles containing insulin-sensitive glucose transporter isoform 4 (GLUT4), which is mobilized from GLUT4 storage vesicles in fat and muscle cells in response to insulin. This protocol for the full membrane fractionation of 3T3-L1 adipocytes results in five distinct fractions. A heavy membrane-containing pellet is produced and then further separated into the plasma membrane, mitochondrial and nuclear, and high-density membrane fractions. The initial supernatant is subjected to a series of centrifugation steps to isolate the low-density membrane fraction, which contains the majority of the insulin-sensitive pool of GLUT4; the supernatant produced in this step is the soluble fraction. The distribution of GLUT4 in fractions from insulin-stimulated versus untreated cells is assessed via immunoblotting.


Asunto(s)
Células 3T3-L1/química , Células 3T3-L1/fisiología , Fraccionamiento Celular/métodos , Membranas/química , Animales , Proteínas de la Membrana/análisis , Ratones
8.
Cold Spring Harb Protoc ; 2016(2): pdb.prot083709, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26832683

RESUMEN

We optimized a set of fractionation techniques to facilitate the isolation of subcellular compartments containing insulin-sensitive glucose transporter isoform 4 (GLUT4), which is mobilized from GLUT4 storage vesicles (GSVs) in fat and muscle cells in response to insulin. In the absence of insulin, GLUT4 undergoes a continuous cycle of GSV formation and fusion with other compartments. Full membrane fractionation of 3T3-L1 adipocytes produces a low-density membrane fraction that contains both the constitutive recycling pool (the endosomal recycling compartments) and the insulin-sensitive pool (the GSVs). These two pools can be separated based on density using iodixanol gradient centrifugation, described here.


Asunto(s)
Células 3T3-L1/química , Células 3T3-L1/fisiología , Fraccionamiento Celular/métodos , Centrifugación por Gradiente de Densidad/métodos , Membranas/química , Ácidos Triyodobenzoicos , Animales , Ratones
9.
Cold Spring Harb Protoc ; 2016(3): pdb.prot083675, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26933243

RESUMEN

The dynamic nature of insulin-sensitive glucose transporter isoform 4 (GLUT4) storage vesicles (GSVs) makes their characterization challenging. Fractionation techniques can facilitate isolation of GSVs from insulin-sensitive cells. In this protocol, we describe preparation of a total membrane fraction from 3T3-L1 adipocytes. The resulting pellet contains all membranes and allows for easier identification of membrane proteins, including the insulin-sensitive pool of GLUT4. A method for concentration of the soluble fraction is also included.


Asunto(s)
Adipocitos/ultraestructura , Fraccionamiento Celular/métodos , Membrana Celular , Animales , Línea Celular , Ratones
10.
Cold Spring Harb Protoc ; 2016(3): pdb.prot083683, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26933244

RESUMEN

The insulin-sensitive pool of glucose transporter isoform 4 (GLUT4) can be isolated from total cell membranes using the 16K fractionation protocol, described here. This method produces a light membrane-containing supernatant that includes the insulin-sensitive pool of GLUT4 in GLUT4 storage vesicles. The 16K pellet fraction contains the heavy membranes (including the plasma membrane, mitochondria, nuclei, Golgi apparatus, and endoplasmic reticulum). The distribution of proteins between the two fractions is determined via immunoblotting. By subjecting insulin-stimulated versus unstimulated cells to this protocol, the mobilization of proteins out of the insulin-sensitive GLUT4 pool can be assessed.


Asunto(s)
Adipocitos/ultraestructura , Fraccionamiento Celular/métodos , Membrana Celular/química , Vesículas Citoplasmáticas/química , Transportador de Glucosa de Tipo 4/aislamiento & purificación , Animales , Línea Celular , Ratones
11.
Mol Biol Cell ; 26(3): 530-6, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25501368

RESUMEN

The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.


Asunto(s)
Adipocitos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Proteínas R-SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Ratones , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo
12.
Commun Integr Biol ; 8(3): e1026494, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26479872

RESUMEN

Insulin stimulates the delivery of glucose transporter-4 (GLUT4)-containing vesicles to the surface of adipocytes. Depletion of the Sec1/Munc18 protein mVps45 significantly abrogates insulin-stimulated glucose transport and GLUT4 translocation. Here we show that depletion of mVps45 selectively reduced expression of VAMPs 2 and 4, but not other VAMP isoforms. Although we did not observe direct interaction of mVps45 with any VAMP isoform; we found that the cognate binding partner of mVps45, Syntaxin 16 associates with VAMPs 2, 4, 7 and 8 in vitro. Co-immunoprecipitation experiments in 3T3-L1 adipocytes revealed an interaction between Syntaxin 16 and only VAMP4. We suggest GLUT4 trafficking is controlled by the coordinated expression of mVps45/Syntaxin 16/VAMP4, and that depletion of mVps45 regulates VAMP2 levels indirectly, perhaps via reduced trafficking into specialized subcellular compartments.

13.
Mol Biol Cell ; 24(15): 2389-97, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23741049

RESUMEN

Insulin stimulates glucose transport in fat and muscle cells by regulating delivery of the facilitative glucose transporter, glucose transporter isoform 4 (GLUT4), to the plasma membrane. In the absence of insulin, GLUT4 is sequestered away from the general recycling endosomal pathway into specialized vesicles, referred to as GLUT4-storage vesicles. Understanding the sorting of GLUT4 into this store is a major challenge. Here we examine the role of the Sec1/Munc18 protein mVps45 in GLUT4 trafficking. We show that mVps45 is up-regulated upon differentiation of 3T3-L1 fibroblasts into adipocytes and is expressed at stoichiometric levels with its cognate target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor, syntaxin 16. Depletion of mVps45 in 3T3-L1 adipocytes results in decreased GLUT4 levels and impaired insulin-stimulated glucose transport. Using sub-cellular fractionation and an in vitro assay for GLUT4-storage vesicle formation, we show that mVps45 is required to correctly traffic GLUT4 into this compartment. Collectively our data reveal a crucial role for mVps45 in the delivery of GLUT4 into its specialized, insulin-regulated compartment.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/fisiología , Proteínas de Transporte Vesicular/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Ratones , Proteínas Munc18/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Receptores de Transferrina/metabolismo , Sintaxina 16/metabolismo , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA