Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(13): 6786-6805, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38503426

RESUMEN

Traditional heterogeneous catalysts are affected in the catalytic hydrogenation of PS by the scale effect, viscosity effect, adhesion effect, and conformational effect, resulting in poor activity and stability. Monolithic Pd-CNTs@FN catalysts could eliminate or weaken the impact of these negative effects. We grew nitrogen-doped carbon nanotubes (NCNTs) on monolithic-foamed nickel (FN) and investigate their growth mechanism. Meanwhile, the feasibility of using the NCNTs@FN carrier for PS hydrogenation reaction was also verified. The growth of NCNTs on FN can be divided into 3 stages: initial growth stage, stable growth stage, and supersaturation stage. Finally, a three-layer structure of NCNT layer, dense carbon layer, and FN skeleton is formed. Two types of structures, nickel-doped carbon nanotubes (NiCNTs) and C-Ni alloy, are formed by combining C and Ni, while four nitrogen-doped structures, NPD, NPR, NG, and NO, are formed by C and N. The prepared carrier exhibited an extremely outstanding specific surface area (2.829 × 106 cm2/g) and strength (no NCNTs falling off after 24 h 500 rpm agitation), as well as high catalytic activity for PS hydrogenation after loaded with Pd (2.13 ± 0.95 nm), with a TOF of up to 27.6 gPS/(gPd•h). After 8 repetitions of the catalyst, there was no significant decrease in activity. This proves the excellent performance of Pd-NCNTs@FN in polymer hydrogenation reactions, laying a solid foundation for further research on the mechanism of NCNTs promoting PS hydrogenation and regulating the growth of NCNTs.

2.
ACS Omega ; 8(29): 26206-26217, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521596

RESUMEN

The acid-catalyzed pre-treatment esterification process is required for low-cost feedstock with high free fatty acids (FFAs) to avoid the saponification that occurs during alkali-catalyzed transesterification for the production of fatty acid alkyl esters (FAAE). Reverse hydrolysis in acid-catalyzed esterification causes a decrease in fatty acid methyl ester (FAME) yield. Therefore, the esterification process must be intensified. This study aims to develop and optimize a low-temperature intensification process to enhance biodiesel yield and reduce energy consumption. Three intensification systems were studied: co-solvent technique, co-solvent coupled with adsorption of water using molecular sieves, and entrainer-based continuous removal of water. The process variables of esterification reaction in co-solvents without the adsorption system were optimized by using central composite design (CCD). The study showed that the co-solvent without the adsorption system was effective in intensifying the FFA conversion (XFFA) at low temperatures, compared to the other two systems, due to the dilution effect at high co-solvent/entrainer amount required for sufficient vapors in the adsorption system. Optimized process variables have achieved 95% XFFA within 75 min at 55 °C, 20 mL/100 g of oil DEE, 9 MR, 3 wt % H2SO4, and 320-350 RPM in a co-solvent without the adsorption system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA