RESUMEN
CYP725A4 is a P450 enzyme from Taxus cuspidata that catalyzes the formation of taxadiene-5α-ol (T5α-ol) from taxadiene in paclitaxel biosynthesis. Past attempts expressing CYP725A4 in heterologous hosts reported the formation of 5(12)-oxa-3(11)-cyclotaxane (OCT) and/or 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) instead of, or in addition to, T5α-ol. Here, we report that T5α-ol is produced as a minor product by Escherichia coli expressing both taxadiene synthase and CYP725A4. The major products were OCT and iso-OCT, while trace amounts of unidentified monooxygenated taxanes were also detected by gas chromatography-mass spectrometry. Since OCT and iso-OCT had not been found in nature, we tested the hypothesis that protein-protein interaction of CYP725A4 with redox partners, such as cytochrome P450 reductase (CPR) and cytochrome b5, may affect the products formed by CYP725A4, possibly favoring the formation of T5α-ol over OCT and iso-OCT. Our results show that coexpression of CYP725A4 with CPR from different organisms did not change the relative ratios of OCT, iso-OCT, and T5α-ol, while cytochrome b5 decreased overall levels of the products formed. Although unsuccessful in finding conditions that promote T5α-ol formation over other products, we used our results to clarify conflicting claims in the literature and discuss other possible approaches to produce paclitaxel via metabolic and enzyme engineering.
Asunto(s)
Alquenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Escherichia coli/metabolismo , Taxus/enzimología , Alquenos/química , Sistema Enzimático del Citocromo P-450/genética , Diterpenos/química , Taxus/genéticaRESUMEN
Introduction: Leptoids, the food-conducting cells of polytrichaceous mosses, share key structural features with sieve elements in tracheophytes, including an elongated shape with oblique end walls containing modified plasmodesmata or pores. In tracheophytes, callose is instrumental in developing the pores in sieve elements that enable efficient photoassimilate transport. Aside from a few studies using aniline blue fluorescence that yielded confusing results, little is known about callose in moss leptoids. Methods: Callose location and abundance during the development of leptoid cell walls was investigated in the moss Polytrichum commune using aniline blue fluorescence and quantitative immunogold labeling (label density) in the transmission electron microscope. To evaluate changes during abiotic stress, callose abundance in leptoids of hydrated plants was compared to plants dried for 14 days under field conditions. A bioinformatic study to assess the evolution of callose within and across bryophytes was conducted using callose synthase (CalS) genes from 46 bryophytes (24 mosses, 15 liverworts, and 7 hornworts) and one representative each of five tracheophyte groups. Results: Callose abundance increases around plasmodesmata from meristematic cells to end walls in mature leptoids. Controlled drying resulted in a significant increase in label density around plasmodesmata and pores over counts in hydrated plants. Phylogenetic analysis of the CalS protein family recovered main clades (A, B, and C). Different from tracheophytes, where the greatest diversity of homologs is found in clade A, the majority of gene duplication in bryophytes is in clade B. Discussion: This work identifies callose as a crucial cell wall polymer around plasmodesmata from their inception to functioning in leptoids, and during water stress similar to sieve elements of tracheophytes. Among bryophytes, mosses exhibit the greatest number of multiple duplication events, while only two duplications are revealed in hornwort and none in liverworts. The absence in bryophytes of the CalS 7 gene that is essential for sieve pore development in angiosperms, reveals that a different gene is responsible for synthesizing the callose associated with leptoids in mosses.
RESUMEN
Indigo and indirubin are derived from indoxyl molecules, which generally occur as indoxyl glycosides in woad (Isatis tinctoria L.) and other indigo-producing plants. Indoxyl glycosides are biosynthesized from indole via 3-hydroxylation to form indoxyl, followed by one or more glycosylations. Enzymes that attach and remove sugars to and from indoxyl have already been isolated and characterized, while enzymes that convert indole into indoxyl in plants have remained elusive, until the identification of P450s and flavin-containing monooxygenases that hydroxylate indole. A P450 gene from woad (named CYP71B102) was heterologously expressed in E. coli, resulting in the formation of indigo and indirubin, as well as isatin and 2-oxindole, which along with indoxyl are putative precursors of indirubin. The addition of either isatin or 2-oxindole to the recombinant E. coli reduced the levels of indigo and increased the amount of indirubin, whereas coexpression of CYP71B102 with isatin hydroxylase (which degrades isatin) increased the levels of indigo and decreased the amount of indirubin, albeit slightly. The results suggest that CYP71B102 hydroxylates indole at both the 2- and 3- positions to produce 2-oxindole and indoxyl, respectively, and that the coupling of indoxyl with either 2-oxindole or isatin forms indirubin, while dimerization of indoxyl forms indigo. This P450 gene is thus likely involved in the biosynthesis of indirubin in woad, as well as the formation of indigo and its glycosidic precursors, even if other types of enzymes, such as flavin-containing monooxygenases, may be involved in indole hydroxylation in other indigo-producing plants.