Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Asunto principal
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(1): 160-169, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36574500

RESUMEN

Several dihydridoborate group 7 metal complexes have been synthesized and their structural aspects have been described from various N,S-, N,N-, and N,O-chelated borate species, such as Na[(H3B)mp] (mp = 2-mercaptopyridyl), Na[(H3B)amt] (amt = 2-amino-5-mercapto-1,3,4-thiadiazolyl), Na[(H3B)hp] (hp = 2-hydroxypyridyl), Na[(H2B)bap] (bap = bis(2-aminopyridyl)), and Na[(H2B)bdap] (bdap = bis(2,6-diaminopyridyl)). Room temperature photolysis of [M2(CO)10] (M = Mn or Re) with these borate species afforded dihydridoborate complexes [(CO)3M(µ-H)2BHL] 1-6 (1, M = Mn, L = mp; 2, M = Re, L = mp; 3, M = Mn, L = amt; 4, M = Mn, L = hp; 5, M = Mn, L = ap; 6, M = Mn, L = dap, ap = 2-aminopyridyl, dap = 2,6-diaminopyridyl). In complexes 1-3, the corresponding (H2BHL) units are coordinated to the metal centers through the (κ3-H,H,S) mode. However, in complexes 4 and 5 (or 6), the connection is via (κ3-H,H,O) and (κ3-H,H,N) modes of coordination, respectively. Complexes 1 and 5 underwent hydroboration reactions with terminal alkynes that yielded trans-hydroborated species [Mn(CO)3(µ-H)2(NC5H4E)B(PhC═CH2)] (7, E = S; 8, E = NH). Density functional theory (DFT) calculations have been carried out to investigate the electronic structures of these dihydridoborate species as well as the nature of bonding in them.

2.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770666

RESUMEN

In an effort to synthesize metallaheteroborane clusters of higher nuclearity, the reactivity of metallaheteroboranes, nido-[(Cp*M)2B6S2H4(CS3)] (Cp* = C5Me5) (1: M = Co; 2: M = Rh) with various metal carbonyls have been investigated. Photolysis of nido-1 and nido-2 with group 6 metal carbonyls, M'(CO)5.THF (M' = Mo or W) were performed that led to the formation of a series of adducts [(Cp*M)2B6S2H4(CS3){M'(CO)5}] (3: M = Co, M' = Mo; 4: M = Co, M' = W; 5: M = Rh, M' = Mo; 6: M = Rh, M' = W) instead of cluster expansion reactions. In these adducts, the S atom of C=S group of di(thioboralane)thione {B2CS3} moiety is coordinated to M'(CO)5 (M = Mo or W) in η1-fashion. On the other hand, thermolysis of nido-1 with Ru3(CO)12 yielded one fused metallaheteroborane cluster [{Ru(CO)3}3S{Ru(CO)}{Ru(CO)2}Co2B6SH4(CH2S2){Ru(CO)3}2S], 7. This 20-vertex-fused cluster is composed of two tetrahedral {Ru3S} and {Ru2B2}, a flat butterfly {Ru3S} and one octadecahedron {Co2RuB7S} core with one missing vertex, coordinated to {Ru2SCH2S2} through two boron and one ruthenium atom. On the other hand, the room temperature reaction of nido-2 with Co2(CO)8 produced one 19-vertex fused metallaheteroborane cluster [(Cp*Rh)2B6H4S4{Co(CO)}2{Co(CO)2}2(µ-CO)S{Co(CO)3}2], 8. Cluster 8 contains one nido-decaborane {Rh2B6S2}, one butterfly {Co2S2} and one bicapped square pyramidal {Co6S} unit that exhibits an intercluster fusion with two sulfur atoms in common. Clusters 3-6 have been characterized by multinuclear NMR and IR spectroscopy, mass spectrometry and structurally determined by XRD analyses. Furthermore, the DFT calculations have been carried out to gain insight into electronic, structural and bonding patterns of the synthesized clusters.

3.
Chemistry ; 28(18): e202104393, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35171519

RESUMEN

Treatment of [Cp*RuCl2 ]2 , 1, [(COD)IrCl]2 , 2 or [(p-cymene)RuCl2 ]2, 3 (Cp*=η5 -C5 Me5, COD= 1,5-cyclooctadiene and p-cymene=η6 -i PrC6 H4 Me) with heterocyclic borate ligands [Na[(H3 B)L], L1 and L2 (L1 : L=amt, L2 : L=mp; amt=2-amino-5-mercapto-1,3,4-thiadiazole, mp=2-mercaptopyridine) led to the formation of borate complexes having uncommon coordination. For example, complexes 1 and 2 on reaction with L1 and L2 afforded dihydridoborate species [LA M(µ-H)2 BHL] 4-6 (4: LA =Cp*, M=Ru, L=amt; 5: LA =Cp*, M=Ru, L=mp; 6: LA =COD, M=Ir, L=mp). On the other hand, treatment of 3 with L2 yielded cis- and trans-bis(dihydridoborate) species, [Ru{(µ-H)2 BH(mp)}2 ], cis-7 and trans-7. The isolation and structural characterization of fac- and mer-[Ru{(µ-H)2 BH(mp)}{(µ-H)BH(mp)2 }], 8 from the same reaction offered an insight into the behaviour of these dihydridoborate species in solution. Fascinatingly, despite having reduced natural charges on Ru centres both at cis-and trans-7, they underwent hydroboration reaction with alkynes that yielded both Markovnikov and anti-Markovnikov addition products, 10 a-d.


Asunto(s)
Boratos , Ligandos
4.
Inorg Chem ; 60(6): 3524-3528, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33646752

RESUMEN

A triple-decker complex of tungsten, [(Cp*W)2{µ-η6:η6-B4H4Co2(CO)5}(H)2] (1; Cp* = η5-C5Me5), with a planar middle deck has been isolated by thermolysis of an in situ formed intermediate from the reaction of Cp*WCl4 and LiBH4 with Co2(CO)8. In addition, we have also isolated another triple-decker complex, [(Cp*W)2{µ-η6:η6-B5H5Fe(CO)3}(H)2] (4), having a puckered central ring, from a similar reaction with Fe2(CO)9. Clusters 1 and 4 are unprecedented examples of a triple-decker complex having a 24-valence electron with bridging hydrogen atoms.

5.
Angew Chem Int Ed Engl ; 58(49): 17684-17689, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31553103

RESUMEN

The room-temperature reaction of [Cp*TaCl4 ] with LiBH4 ⋅THF followed by addition of S2 CPPh3 results in pentahydridodiborate species [(Cp*Ta)2 (µ,η2 :η2 -B2 H5 )(µ-H)(κ2 ,µ-S2 CH2 )2 ] (1), a classical [B2 H5 ]- ion stabilized by the binuclear tantalum template. Theoretical studies and bonding analysis established that the unusual stability of [B2 H5 ]- in 1 is mainly due to the stabilization of sp2 -B center by electron donation from tantalum. Reactions to replace the hydrogens attached to the diborane moiety in 1 with a 2 e {M(CO)4 } fragment (M=Mo or W) resulted in simple adducts, [{(Cp*Ta)(CH2 S2 )}2 (B2 H5 )(H){M(CO)3 }] (6: M=Mo and 7: M=W), that retained the diborane(5) unit.

6.
Inorg Chem ; 57(17): 10896-10905, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30124293

RESUMEN

In an effort to synthesize chalcogen-rich metallaheteroborane clusters of group 5 metals, thermolysis of [Cp*TaCl4] (Cp* = η5-C5Me5) with thioborate ligand Li[BH2S3] was carried out, affording trimetallic clusters [(Cp*Ta)3(µ-S)3(µ3-S)3B(R)], 1-3 (1, R = H; 2, R = SH; and 3, R = Cl). Clusters 1-3 are illustrative examples of cubane-type organotantalum sulfido clusters in which one of the vertices of the cubane is missing. In parallel to the formation of 1-3, the reaction also yielded tetrametallic sulfido cluster [(Cp*Ta)4(µ-S)6(µ3-S)(µ4-O)], 6, having an adamantane core structure. Compound 6 is one of the rarest examples containing the µ4-oxo unit with a heavier early transition metal, i.e., tantalum. In an effort to isolate selenium analogues of clusters 1-3, we have isolated the trimetallic cluster [(Cp*Ta)3(µ-Se)3(µ3-Se)3B(H)], 4, from the thermolytic reaction of [Cp*TaCl4] and Li[BH2Se3]. In contrast, the thermolysis of [Cp*TaCl4] with Li[BH2Te3] under the same reaction conditions yielded tantalum telluride complex [(Cp*Ta)2(µ-Te)2], 5. Compounds 1-4 are hypo-electronic clusters with an electron count of 50 cluster valence electrons. All these compounds have been characterized by 1H, 11B{1H}, and 13C{1H} NMR spectroscopy; infrared spectroscopy; mass spectrometry; and single-crystal X-ray crystallography. The density functional theory calculations were also carried out to provide insight into the bonding and electronic structures of these molecules.

7.
Chem Sci ; 13(29): 8567-8575, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35974760

RESUMEN

Cooperative dual site activation of boranes by redox-active 1,3-N,S-chelated ruthenium species, mer-[PR3{κ2-N,S-(L)}2Ru{κ1-S-(L)}], (mer-2a: R = Cy, mer-2b: R = Ph; L = NC7H4S2), generated from the aerial oxidation of borate complexes, [PR3{κ2-N,S-(L)}Ru{κ3-H,S,S'-BH2(L)2}] (trans-mer-1a: R = Cy, trans-mer-1b: R = Ph; L = NC7H4S2), has been investigated. Utilizing the rich electronic behaviour of these 1,3-N,S-chelated ruthenium species, we have established that a combination of redox-active ligands and metal-ligand cooperativity has a big influence on the multisite borane activation. For example, treatment of mer-2a-b with BH3·THF led to the isolation of fac-[PR3Ru{κ3-H,S,S'-(NH2BSBH2N)(S2C7H4)2}] (fac-3a: R = Cy and fac-3b: R = Ph) that captured boranes at both sites of the κ2-N,S-chelated ruthenacycles. The core structure of fac-3a and fac-3b consists of two five-membered ruthenacycles [RuBNCS] which are fused by one butterfly moiety [RuB2S]. Analogous fac-3c, [PPh3Ru{κ3-H,S,S'-(NH2BSBH2N)(SC5H4)2}], can also be synthesized from the reaction of BH3·THF with [PPh3{κ2-N,S-(SNC5H4)}{κ3-H,S,S'-BH2(SNH4C5)2}Ru], cis-fac-1c. In stark contrast, when mer-2b was treated with BH2Mes (Mes = 2,4,6-trimethyl phenyl) it led to the formation of trans- and cis-bis(dihydroborate) complexes [{κ3-S,H,H-(NH2BMes)Ru(S2C7H4)}2], (trans-4 and cis-4). Both the complexes have two five-membered [Ru-(H)2-B-NCS] ruthenacycles with κ2-H-H coordination modes. Density functional theory (DFT) calculations suggest that the activation of boranes across the dual Ru-N site is more facile than the Ru-S one.

8.
Dalton Trans ; 51(12): 4806-4813, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35254378

RESUMEN

The chemistry of the Cp* based κ2-N,S-chelated ruthenium complex, [Cp*RuPPh3(κ2-N,S-(NC7H4S2)], 1 with different boranes has been explored. The room temperature reaction of 1 with BH3·THF and bulky boranes, such as MesBH2 and H2BArF, led to the formation of different dihydridoborate complexes, [{κ3-S,H,H-(NBH2R)(S2H4C7)}RuCp*], 2-4 (2: R = H, 3: R = Mes, and 4: R = ArF; Mes = 2,4,6-trimethylphenyl, and ArF = 3,5-bistrifluoromethyl-benzene). In contrast, the Cp* based κ2-N,S-chelated molybdenum complex, [Cp*Mo(CO)2{κ2-N,S-(NC7H4S2)}], 5, yielded the agostic borate species, [Cp*Mo(CO)2{κ2-S,H-(NBH2R) (NC7H4S2)}], 6 and 7 (6: R = Mes and 7: R = ArF) at elevated temperatures.

9.
Chem Asian J ; 15(6): 780-786, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32003529

RESUMEN

Triply-bridging bis-{hydrido(borylene)} and bis-borylene species of groups 6, 8 and 9 transition metals are reported. Mild thermolysis of [Fe2 (CO)9 ] with an in situ produced intermediate, generated from the low-temperature reaction of [Cp*WCl4 ] (Cp*=η5 -C5 Me5 ) and [LiBH4 ⋅THF] afforded triply-bridging bis-{hydrido(borylene)}, [(µ3 -BH)2 H2 {Cp*W(CO)2 }2 {Fe(CO)2 }] (1) and bis-borylene, [(µ3 -BH)2 {Cp*W(CO)2 }2 {Fe(CO)3 }] (2). The chemical bonding analyses of 1 show that the B-H interactions in bis-{hydrido (borylene)} species is stronger as compared to the M-H ones. Frontier molecular orbital analysis shows a significantly larger energy gap between the HOMO-LUMO for 2 as compared to 1. In an attempt to synthesize the ruthenium analogue of 1, a similar reaction has been performed with [Ru3 (CO)12 ]. Although we failed to get the bis-{hydrido(borylene)} species, the reaction afforded triply-bridging bis-borylene species [(µ3 -BH)2 {WCp*(CO)2 }2 {Ru(CO)3 }] (2'), an analogue of 2. In search for the isolation of bridging bis-borylene species of Rh, we have treated [Co2 (CO)8 ] with nido-[(RhCp*)2 (B3 H7 )], which afforded triply-bridging bis-borylene species [(µ3 -BH)2 (RhCp*)2 Co2 (CO)4 (µ-CO)] (3). All the compounds have been characterized by means of single-crystal X-ray diffraction study; 1 H, 11 B, 13 C NMR spectroscopy; IR spectroscopy and mass spectrometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA