Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Food Sci Technol ; 59(10): 3827-3835, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36193364

RESUMEN

The utilization of conventional protein sources like gluten, soy, dairy proteins, and nuts in the development of protein-enriched cereal bars presents a challenge for their consumption by the population suffering from celiac and other food protein allergies. In the present investigation, protein-rich cereal bars were developed using non-conventional protein isolates (alfalfa and dhiancha (API & DPI) and were evaluated for their quality attributes, nutritional composition, and bioactive potential. The incorporation of protein isolates increased the weight, density, and non-enzymatic browning and decreased the water activity in the bars. The hardness of the bar increased with the addition of protein isolates; however, reduced hardness was observed at 7.5 and 10% levels of API. Supplementation with protein isolates enhanced the protein content (7.83-16.71%), total phenols (1642-4956 GAE µg/g), total flavonoids (268-984 QE µg/g), DPPH radical scavenging activity (96.38-114.82 TEAC µmol/100 g) and reducing power (1926-3586 AAE µg/g) of the bars. Cereal bars maintained good sensory score and overall acceptability at 10 and 5% level of incorporation of API and DPI respectively.

2.
Food Technol Biotechnol ; 59(2): 238-250, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316284

RESUMEN

RESEARCH BACKGROUND: Dhaincha (Sesbania aculeata) is a forage legume primarily used for green manuring and animal feed. Good nutritional profile of dhaincha makes it a potential alternative legume in human nutrition. However, the presence of high amount of antinutrients poses a problem in its utilisation for food applications. The present investigation intends to germinate dhaincha seeds at different time-temperature regimes and to evaluate the process of germination to ascertain optimal conditions and improve its potential for utilisation. EXPERIMENTAL APPROACH: Dhaincha seeds were germinated at 24, 28 and 32 °C for 24, 48 and 72 h. Germination characteristics and germination loss, spectral characteristics, technofunctionality, antinutrients, bioactive constituents, antioxidant capacity and mineral element content of germinated dhaincha were evaluated. Optimal balance of technobiofunctionality of germinated dhaincha seeds was validated by principal component analysis. RESULTS AND CONCLUSIONS: Sprout length and germination loss increased with the higher germination temperature and prolonged germination time. Seeds showed similar germination rate at 28 and 32 °C and it was markedly higher than at 24 °C. Germination for 24 h resulted in mild conformational changes in the secondary structure of proteins, whereas germination for 48 and 72 h exhibited major conformational changes in the ß-sheets, resulting in the improvement in the hydration and foaming properties. Progression of germination (72 h) caused the decrease of tannin (24.47%), phytic acid (16.38%) and saponin (24.58%) mass fractions, and of trypsin inhibitor (40.33%) and lectin activity (62.50%). Slight decrease of DPPH˙ (3.7%) and ABTS˙+ (18.5%) values was also observed, whereas total flavonoid content (36.14%) and metal chelating activity (26.76%) increased. Total phenolics, FRAP, and reducing power decreased after 24 h, followed by a gradual increase. Zinc extractability increased drastically with germination. Germination at 28 °C for 72 h resulted in higher reduction of antinutrients with optimal retention of antioxidant activity and better functional characteristics, as validated by principal component analysis. NOVELTY AND SCIENTIFIC CONTRIBUTION: Dhaincha is an unknown crop in Europe, and even in Asia it is predominantly used as green manure and animal feed. This research demonstrated that the intervention in germination can transform dhaincha into a promising crop for food industry. Germinated dhaincha exhibited enhanced technobiofunctionality for utilisation in various food formulations.

3.
J Texture Stud ; 54(2): 173-205, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36757668

RESUMEN

Texture is an important sensory attribute that drives consumer acceptance of any food material. In recent times consumers' demand for high-quality food urges food industries to provide food with consistent textural properties. However, texture measurement not just requires a trained sensory panel but also a considerable amount of time and effort. On the flip side, human observation could be subjective hence repeatability of the result may not be ensured and/or relied on. Contrary to that, objective methods for texture measurement are reliable and consistent, but are not suitable for in-line application and also destructive in nature. The mentioned crisis has made industries opt for nondestructive texture analysis techniques. In the past decade, considerable research has been carried out on nondestructive texture analysis methods such as micro-deformation, and acoustic and optical techniques, showing feasibility for in-line applications. The current review focuses on the working principles and most recent applications of nondestructive techniques for texture analysis of food products. Moreover, a detailed review of contact and noncontact-type texture measurement has been presented in this article. The literature survey is concluded with future research aspects and challenges involved in the commercialization of the nondestructive texture analysis techniques.


Asunto(s)
Calidad de los Alimentos , Alimentos , Humanos , Tecnología de Alimentos
4.
Ultrason Sonochem ; 92: 106261, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36516722

RESUMEN

One of the earliest and most prevalent processing methods to increase the shelf-life of foods is drying. In recent years, there has been an increased demand to improve product quality while lowering processing times, expenses, and energy usage in the drying process. Pre-treatments are therefore effectively used before drying to enhance heat and mass transfer, increase drying efficiency, and lessen degradation of final product quality. When food is dried, changes are expected in its taste, color, texture, and physical, chemical, and microbial properties. This has led to the need for research and development into the creation of new and effective pre-treatment technologies including high-pressure processing, pulsed electric field, ultraviolet irradiation, and ultrasound. Sound waves that have a frequency >20 kHz, which is above the upper limit of the audible frequency range, are referred to as "ultrasound". Ultrasonication (US) is a non-thermal technology, that has mechanical, cavitational, and sponge effects on food materials. Ultrasound pre-treatment enhances the drying characteristics by producing microchannels in the food tissue, facilitating internal moisture diffusion in the finished product, and lowering the barrier to water migration. The goal of ultrasound pre-treatment is to save processing time, conserve energy, and enhance the quality, safety, and shelf-life of food products. This study presents a comprehensive overview of the fundamentals of ultrasound, its mechanism, and how the individual effects of ultrasonic pre-treatment and the interactive effects of ultrasound-assisted technologies affect the drying kinetics, bioactive components, color, textural, and sensory qualities of food. The difficulties that can arise when using ultrasound technology as a drying pretreatment approach, such as inadequate management of heat, the employment of ultrasound at a limited frequency, and the generation of free radicals, have also been explained.


Asunto(s)
Desecación , Manipulación de Alimentos , Manipulación de Alimentos/métodos , Desecación/métodos , Cinética , Fenómenos Químicos , Alimentos
5.
J Texture Stud ; 53(6): 709-736, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34580867

RESUMEN

Electromagnetic waves are frequently used for food processing with commercial or domestic type microwave ovens at present. Microwaves cause molecular movement by the migration of ionic particles or rotation of dipolar particles. Considering the potential applications of microwave technique in food industry, it is seen that microwaves have many advantages such as saving time, better final product quality (more taste, color, and nutritional value), and rapid heat generation. Although microwave treatment used for food processing with developing technologies have a positive effect in terms of time, energy, or nutrient value, it is also very important to what extent they affect the textural properties of the food that they apply to. For this purpose, in this study, it has been investigated that the effects of commonly used microwave treatments such as drying, heating, baking, cooking, thawing, toasting, blanching, frying, and sterilization on the textural properties of food. In addition, this study has also covered the challenges of microwave treatments and future work. In conclusion, microwave treatments cause energy saving due to a short processing time. Therefore, it can be said that it affects the textural properties positively. However, it is important that the microwave processing conditions used are chosen appropriately for each food material.

6.
Food Sci Technol Int ; 27(3): 251-263, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32819158

RESUMEN

Impact of different processing techniques (wet heating, microwave processing, dry heating, soaking, and extrusion) on the techno-biofunctional characteristics of dhaincha (Sesbania aculeate) was investigated to ascertain the most effective method for processing dhaincha to improve its potentiality for utilization. All the processing techniques improved the cooking quality of dhaincha seeds. Thermal processing techniques were effective in reducing antinutrients and enhancing the antioxidant activity in comparison to soaking. Microwave and extrusion processing completely inactivated lectin and trypsin inhibitor activity and reduced 13.48% and 23.68% saponins, respectively. Extrusion treatment resulted in the maximum increase in total phenols (21.94 to 28.48 GAE mg/g) and flavonoids (0.94 to 1.41 QE mg/g) with consequent highest increase in ABTS· + RSA (161.21 to 261.27 TEAC µmol/100g), FRAP (34.97 to 39.04 TEAC µmol/g), reducing power (12.18 to 17.05 AAE mg/g), and metal chelating activity (2.65 to 3.76 mmol EDTAE/100g). Furthermore, extrusion treatment improved techno-functional characteristics and exhibited improvement in the freeze and refrigeration thaw stability in comparison to other methods of processing. Extrusion processing was the most effective method to process dhaincha for improving its techno-biofunctionality.


Asunto(s)
Manipulación de Alimentos , Semillas , Sesbania , Antioxidantes/análisis , Flavonoides/análisis , Manipulación de Alimentos/métodos , Fenoles/análisis , Semillas/química , Sesbania/química
7.
Food Chem ; 333: 127503, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32683258

RESUMEN

Protein isolates were prepared from wet heat processed (APIp) and unprocessed alfalfa seeds (APIc) and characterized for composition and functionality at different pH. APIc and APIp exhibited high content of all the essential amino acids. Antinutrient content of APIp was lower in comparison to APIc and marked reduction in the trypsin inhibitor (85.97%) and lectin activity (100%) was observed. Processing did not cause much reduction of bioactive constituents and antioxidant activity of APIp. Alfalfa protein isolates exhibited complex polypeptide banding ranging from molecular weight of 11-75 kDa. APIp exhibited change in the conformation of protein discerned as alteration in interrelated nuances of ATR-FTIR spectra, XRD-pattern, morphology, charge on proteins and reduced solubility in comparison to APIc due to processing. APIp exhibited marked improvement in the functional properties in comparison to APIc discerned as improved hydration, surface active and gelation properties. Highest hydration and surface active properties were exhibited at pH 9.0, even though APIp at pH 7.0 showed fairly similar functional properties as APIc and APIp at pH 9.0. APIp exhibited reduced least gelation concentration in comparison to APIc at pH 7.0 and also engendered gelation at pH 4.0 and 9.0 contrary to APIc.


Asunto(s)
Aminoácidos Esenciales/química , Medicago sativa/química , Proteínas de Plantas/química , Concentración de Iones de Hidrógeno , Medicago sativa/efectos de los fármacos , Peso Molecular , Proteínas de Plantas/aislamiento & purificación , Solubilidad , Inhibidores de Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA